
© author(s) of these slides including research results from the KOM research network and TU Darmstadt; otherwise it is specified at the respective slide

27-Nov-15

Prof. Dr.-Ing. Ralf Steinmetz

KOM - Multimedia Communications Lab

Template all v.3.4

PPT-for-all___v.3.4_office2010___2012.09.10.pptx

Game Technology

Lecture 5 – 28.11.2015

Hardware Rendering

Dr.-Ing. Florian Mehm

KOM – Multimedia Communications Lab 2

Organization

Date Lecture Topic

24.10.2015 1 Input and Output

2 The Game Loop

3 Software Rendering

4 Advanced Software Rendering

28.11.2015 5 Basic Hardware Rendering

6 Bumps and Animations

7 Physically Based Rendering

8 Physics 1

19.12.2015 9 Physics 2

10 Procedural Content Generation

11 Compression and Streaming

12 Multiplayer

23.1.2016 13 Audio

14 Artificial Intelligence

15 Scripting

KOM – Multimedia Communications Lab 3

Lecture recordings

 Available on the wiki: https://wiki.ktxsoftware.com

Exercises from last block

 Exercise 1 corrected

 Will be uploaded to your git repository

 Groups which uploaded incorrectly were informed

New exercises

 3 exercises until next block

Organization

https://wiki.ktxsoftware.com/

KOM – Multimedia Communications Lab 4

Next block: 19.12.2015

 Sorry about the date!

 Recordings will be available soon after the block

 No exercise scheduled for winter break (but will respond to feedback during the

break if you want to work)

Organization

KOM – Multimedia Communications Lab 5

Game Jams

 Game development contest

 Vague theme (e.g. “10 seconds”)

 Tight time constraints (e.g. 48 h)

 Starting from scratch (design, assets, code, …)

 No excuses – just submit something…

Ludum Dare 34@TUD

 Sa., 12.12.2015, 9:00 –

Mo., 14.12.2015 (night)

 Registration (first-come-first-serve):

gamejam@kom.tu-darmstadt.de

Ludum Dare@KOM

10 Seconds to Apocalypse, 2013

10Up Experiments: Mountain Brew, 2014
10sion, 2013

The Most Important 10 Seconds Of Your Life, 2013

A Maze Thing, 2013

Ludum Dare 30 @ TUD, 2014

As We Are, 2014

The Head Wizards Course, 2014

Neon Multiverse, 2014

KOM – Multimedia Communications Lab 6

KOM – Multimedia Communications Lab 7

KOM – Multimedia Communications Lab 8

KOM – Multimedia Communications Lab 9

KOM – Multimedia Communications Lab 10

KOM – Multimedia Communications Lab 11

Pong & Computer Space

Pong (1972), Computer Space (1971)

KOM – Multimedia Communications Lab 12

Pong “Game Engine”

Pong (1972), Clock Generator

KOM – Multimedia Communications Lab 13

Apple 2 (1977)

KOM – Multimedia Communications Lab 14

One of the first mass-produced

home computer with CG

capabilities

 Quirky hardware and software

interface

 But: Gave rise to first home graphical

games

Apple II

Mystery House (1980)

KOM – Multimedia Communications Lab 15

Apple II Graphics

KOM – Multimedia Communications Lab 16

Apple II Graphics (Low-res mode)

KOM – Multimedia Communications Lab 17

Atari VCS (1977)

KOM – Multimedia Communications Lab 18

Later renamed to Atari 2600

MOS Technologies 6507

 Variant of 6502: Addressable
memory reduce from 64 kB to 8 kB

 ~1,19 MHz

Developers had to be very
creative

 E.g. build mirrored levels

 Use the timing of the monitor to
switch colors in one frame

 Use undocumented features

More info: “Racing the Beam:
The Atari Video Computer
System”

Atari VCS

Adventure (1979)

KOM – Multimedia Communications Lab 19

Nintendo Entertainment System/Famicom

(1983)

KOM – Multimedia Communications Lab 20

CPU: Ricoh 2A03 (6502-base) @ 1,77 MHz (PAL) / 1,79 MHz (NTSC)

Graphics: PPU Ricoh-Chip (NTSC: RP2C02, PAL: RP2C07) @ 5,37

MHz bzw. 5,32 MHz

CPU: Not much difference to VCS

 But built for better handling of sprite, tiled rendering

Nintendo Entertainment System/Famicom

KOM – Multimedia Communications Lab 21

Sprite flickering

 Emulated in Mega Man 9 (2008)

 Happened when too many sprites

were being drawn

Limited memory

 Intended for tiled backgrounds

 Sprites only small elements

 Mega Man boss fights: Black

background for memory reasons

NES quirks

Mega Man 2 (1988)

KOM – Multimedia Communications Lab 22

NES Quirks

https://www.youtube.com/watch?feature=player_embedded&v=JrH5Q8gssvY

KOM – Multimedia Communications Lab 23

Commodore 64 (1982)

KOM – Multimedia Communications Lab 24

Amiga 500 (1987)

KOM – Multimedia Communications Lab 25

Origin (Complex), 1993

https://www.youtube.com/watch?v=MeoFaHW3nvw

KOM – Multimedia Communications Lab 26

IBM PC (1981)

KOM – Multimedia Communications Lab 27

Voodoo Graphics (1996)

KOM – Multimedia Communications Lab 28

Triangle raster engine

Linearly interpolated Gouraud-shaded rendering

Perspective-corrected (divide-per-pixel) texture-mapped rendering

with iterated RGB modulation/addition

Detail and Projected Texture mapping

Linearly interpolated 16-bit Z-buffer rendering

Perspective-corrected 16-bit floating point W-buffer rendering (patent

pending)

Texture filtering: point-sampling, bilinear, and trilinear filtering with

mipmapping

…

Features of Voodo Graphics chip

KOM – Multimedia Communications Lab 29

Modern intel CPUs

KOM – Multimedia Communications Lab 30

Windows Vista (2007)

KOM – Multimedia Communications Lab 31

PS4

KOM – Multimedia Communications Lab 32

CPU

 Run sequential code as fast as possible

GPU (Graphical Processing Unit)

 Massively parallel code execution

 Plus triangle rasterizer

 Plus texture sampler

GPGPU (General purpose computations on GPU)

 Programmable computing units, not directly tied to graphics anymore

 Carry out a computation massively parallelized

CPU vs GPU

KOM – Multimedia Communications Lab 33

http://www.gdcvault.com/play/102

2421/Ubisoft-Cloth-Simulation-

Performance-Postmortem

Ideally suited for parallel tasks

 Adding many large vectors

 …

What if there are dependencies?

 Throw away some results

 Organize data better

 ...

GPGPU

http://www.gdcvault.com/play/1022421/Ubisoft-Cloth-Simulation-Performance-Postmortem

KOM – Multimedia Communications Lab 34

https://www.coursera.org/course/hetero

MOOC course “Heterogeneous Parallel Programming”

University of Illinois

GPGPU

https://www.coursera.org/course/hetero

KOM – Multimedia Communications Lab 35

Triangles

KOM – Multimedia Communications Lab 36

Aliasing

KOM – Multimedia Communications Lab 37

Sampling frequency is too low

 Example: Original wave on the left

 Sample points in the middle

 Inaccurate sampled wave on the right

Aliasing

KOM – Multimedia Communications Lab 38

Specifically work on edges

Blur with the background

Would require back-to-front rendering

Edge Antialiasing

KOM – Multimedia Communications Lab 39

Supersample Antialiasing

KOM – Multimedia Communications Lab 40

Multisample Antialiasing

https://www.youtube.com/watch?v=Nef6yWYu0-I

KOM – Multimedia Communications Lab 41

Postprocess Antialiasing

KOM – Multimedia Communications Lab 42

Temporal Anti-Aliasing

Anti-Aliasing done over several frames, to remove effects seen during

motion

KOM – Multimedia Communications Lab 43

Basically images

Preferably 2n * 2n

 Other sizes not necessarily supported

 Expand image and fix up texture coordinates

Textures

KOM – Multimedia Communications Lab 44

Point Filtering

Bilinear Filtering

 Interpolate four neighbouring pixels

Texture Sampling

KOM – Multimedia Communications Lab 45

Bilinear filtering

KOM – Multimedia Communications Lab 46

Example: Texture mapped to one pixel

 Ideally calculate mean color value of the complete texture

Trick: Precompute images

 Width / 2, Height / 2

 Width / 4, Height / 4

 …

 Sample from best fitting image

(multum in parvo, „much in little)

Mip Mapping

KOM – Multimedia Communications Lab 47

No mip mapping

KOM – Multimedia Communications Lab 48

MIP Mapping

KOM – Multimedia Communications Lab 49

Seams between mip levels are often visible

 Trilinear filtering

Perspective stretches images differently in x and y

 No optimal mip level

Mip Mapping

KOM – Multimedia Communications Lab 50

Anisotropic Filtering

KOM – Multimedia Communications Lab 51

Anisotropic filtering

KOM – Multimedia Communications Lab 52

Implemented in hardware

Used automatically by the rasterizer

3D APIs offer simple configuration

 Off, allow only smaller values, allow only larger values

Depth Buffer

KOM – Multimedia Communications Lab 53

Critical for performance

 Reads in previous pixels, stresses memory interface

 Makes parallel execution more difficult

Fixed modes

 1 * new pixel + 0 * old pixel

 source alpha * new pixel + (1 - source alpha) * old pixel

 …

 (destination alpha is rarely used)

Alpha-Blending

KOM – Multimedia Communications Lab 54

Render to texture

Draw rendered texture

Draw blended geometry

 Use rendered texture as input

Much slower

Programmable Blending

KOM – Multimedia Communications Lab 55

Standard blending

 source alpha * new pixel + (1 - source alpha) * old pixel

Additive blending

 source alpha * new pixel + old pixel

Most used blending modes

KOM – Multimedia Communications Lab 56

Bilinear filtering samples rgb + alpha

At alpha borders samples rgb values with alpha 0

Texture Sampling and Transparency

KOM – Multimedia Communications Lab 57

Multiply rgb with alpha

Fixes texture sampling (invisible pixels are multiplied with 0)

Fixes sunglasses

 Premultiply alpha, then add something

 Combines standard and additive blending

Blending mode:

 new pixel + (1 - source alpha) * old pixel

Premultiplied Alpha

KOM – Multimedia Communications Lab 58

Calculates vertex transformations

Prepares additional data for later shader stages

 What we did in Exercise 3

Vertex Shader

KOM – Multimedia Communications Lab 59

Also referred to as Pixel Shader

Uses interpolated data from vertex shader

Calculates colors

 What we did in Exercise 4

Fragment Shader

KOM – Multimedia Communications Lab 60

Array of vertices

Can hold additional data per vertex

 E.g normal, animation data, ...

Has to assign additional data to names or registers for vertex shader

Primary interface from CPU to GPU

Vertex Buffer

KOM – Multimedia Communications Lab 61

Array of indices

That‘s it

 One vertex can be re-used in several triangles

Index Buffer

KOM – Multimedia Communications Lab 62

Set Vertex Shader

Set Fragment Shader

Set IndexBuffer

Set Vertex Buffer

DrawIndexedTriangles()

DrawIndexedTriangles()

…

Draw Calls

KOM – Multimedia Communications Lab 63

Create command buffers

Verify data

(compile shaders)

…

Implicit Work

KOM – Multimedia Communications Lab 64

No Rasterization

Additional options for data synchronization

Not yet supported everywhere

Many competing languages

 Even OpenCL and GLSL compute shaders

Compute Shader GPGPU

KOM – Multimedia Communications Lab 65

Xeon Phi

 Ex project Larrabee

• https://code.google.com/p/cudaraster/

• From nVidia

Triangles on Compute

https://code.google.com/p/cudaraster/

KOM – Multimedia Communications Lab 66

Geometry Shader

 Works on complete triangles

Tesselation Shader

 Can create new triangles

Not yet supported on all hardware

 Notably no support on iOS

More Shaders

KOM – Multimedia Communications Lab 67

color = ambient + diffuse + specular

 Note: Light from different sources can always be added just like that

Phong Lighting

KOM – Multimedia Communications Lab 68

Ambient = Constant

KOM – Multimedia Communications Lab 69

Diffuse

KOM – Multimedia Communications Lab 70

diffuse = LN (see previous lecture)

Diffuse

KOM – Multimedia Communications Lab 71

Specular

KOM – Multimedia Communications Lab 72

𝑰𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 = 𝑰𝒊𝒏𝒌𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓𝒄𝒐𝒔
𝒏𝜽

𝑰𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 = 𝑰𝒊𝒏𝒌𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 𝑹 ∙ 𝑽
𝐧

R: mirrored vector to the light source (reflectance vector)

V: vector to the camera

n: roughness – start at 32 and tune

Empirical model (aka basically nonsense)

Ugly for larger angles (cos  0)

(H: Half-vector between V and L)

(N: Normal)

Specular

KOM – Multimedia Communications Lab 73

𝑯 =
𝑽 + 𝑳

𝑽 + 𝑳

𝑰𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 = 𝑰𝒊𝒏𝒌𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓𝒄𝒐𝒔
𝒏𝜽′

𝑰𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 = 𝑰𝒊𝒏𝒌𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 ∙
(𝑽 + 𝑳) ∙ 𝑵

(𝑽 + 𝑳) ∙ 𝑵

A little faster

A little nicer

Blinn Phong

KOM – Multimedia Communications Lab 74

Real ambient light is hard

 Light bouncing and bouncing and bouncing…

Ambient light tends to look very diffuse

 No hard borders

Precompute everything

 Put it in small textures

 Bilinear filtering blurry stuff works wonderfully

Better ambient light

KOM – Multimedia Communications Lab 75

Light Baking

Quake (1996)

KOM – Multimedia Communications Lab 76

Render six orthogonal perspectives into a cube map

 Camera center = center of object to be rendered

Sample vector into cubemap for every pixel

Obviously very expensive

Can not be precomputed

Better specular lighting

KOM – Multimedia Communications Lab 77

Thinking of „Ambient“ is only an approximation

 Phong lighting is an approximation of an approximation

Light bounces around

 First bounce  direct lighting (use diffuse and specular)

 Second bounce  hard shadows

 More bounces  ambient light

Ambient, Diffuse…

KOM – Multimedia Communications Lab 78

Set camera to light source

Render depth  each pixel value = distance from light

During regular rendering

Transform vertices two times

 Using camera position

 Using light position  z = distance from light

Read depth texture

Compare depth calculated using light pos and depth from texture

 If greater  in shadow

Shadow Mapping

KOM – Multimedia Communications Lab 79

Shadow Mapping

KOM – Multimedia Communications Lab 80

Shadow Mapping Problems

KOM – Multimedia Communications Lab 81

Cascaded Shadow Maps

KOM – Multimedia Communications Lab 82

What work can the GPU assist us with?

 Highly parallel calculations:

 Graphics (each pixel, each vertex, ...)

 General purpose tasks that can be parallelized

 Graphics-related tasks

 Rasterization

 Texture lookups/filtering

Techniques

 Antialiasing

 Mip-mapping

 ...

Now: How to program this?

Summary

KOM – Multimedia Communications Lab 83

OpenGL Shading Language

Added to OpenGL in 2004 with OpenGL 2.0

Version 1.10

Similar to C

Semiautomatic parallelization

GLSL

KOM – Multimedia Communications Lab 84

uniform sampler2D tex;

varying vec2 texCoord;

varying vec4 color;

void kore() {

vec4 texcolor = texture2D(tex, texCoord) * color;

texcolor.rgb *= color.a;

gl_FragColor = texcolor;

}

GLSL Example

KOM – Multimedia Communications Lab 85

Kore and especially Kha are intended for cross-platform usage

Challenge 1: GSLS versions, capabilities

 Widest coverage: OpenGL ES Shading Language

 WebGL: Based on OpenGL ES

 Supported across mobile devices

 Supported on desktop devices

Challenge 2: Different shader languages

 E.g. on Windows: DirectX, HLSL

 Apple devices: Metal

 Cross-compiler krafix

Kore/Kha specialties

KOM – Multimedia Communications Lab 86

Transforms vertices

Writes transformed vertex to special var

 gl_Position

Can write additional data

Vertex Shader

KOM – Multimedia Communications Lab 87

Writes final color to special var

 gl_FragColor

Can not write additional data

 Mostly (multi target rendering, gl_FragDepth,… - not on all hardware)

Fragment Shader

KOM – Multimedia Communications Lab 88

Vertex shader defines one function..

 ...which is applied to lots of vertices in parallel

Fragment shader defines one function...

 ...which is applied to lots of pixels in parallel

Programming model allows hardware to parallelize automatically

 To multiple compute cores, SIMD units or weird combinations of both

Parallelism

KOM – Multimedia Communications Lab 89

Constants

 Do not change while shader executes

 Can be changed between draw calls

uniform mat4 projectionMatrix;

uniform sampler2D tex;

Uniforms

KOM – Multimedia Communications Lab 90

Vertex shader input

Defined in Vertex Buffer

attribute vec3 vertexPosition;

attribute vec2 texPosition;

attribute vec4 vertexColor;

Attributes

KOM – Multimedia Communications Lab 91

Transfer data between shader stages

Vertex shader  Interpolation  Fragment shader

Output in vertex shader = input in fragment shader

varying vec2 texCoord;

Varyings

KOM – Multimedia Communications Lab 92

vec3 position;

vec4 color;

Support basic arithmetic

Support swizzling

 color.bgr

 position.xy

Vector types

KOM – Multimedia Communications Lab 93

mat4 projection;

Supports arithmetic with vectors

Matrix types

KOM – Multimedia Communications Lab 94

To read textures

uniform sampler2D tex;

vec4 texcolor = texture2D(tex, texCoord);

Samplers

KOM – Multimedia Communications Lab 95

gl_Position

gl_FragColor

https://www.opengl.org/wiki/Built-in_Variable_(GLSL)

 There are many more

Special vars

https://www.opengl.org/wiki/Built-in_Variable_(GLSL)

KOM – Multimedia Communications Lab 96

precision mediump float;

Precision can be reduced

 Often makes sense in the fragment shader

 And is often necessary (OpenGL ES)

Precision modifiers

KOM – Multimedia Communications Lab 97

Up to version 4.5

Different versions for OpenGL ES

Kore uses „GLSL ES“

 GLSL version used by OpenGL ES 2.0 and WebGL

 GLSL 1.1 plus some 1.2

GLSL versions

KOM – Multimedia Communications Lab 98

main is called kore

 Only difference to real GLSL

To make things easier in Windows use

 node Kore/make -g opengl2

 Optionally debug Direct3D later

 (Deletes your varyings in the fragment shader when they are not used, which

breaks shader linkage)

Shader compiled automatically in Visual Studio

 Not in XCode or Code::Blocks

 Optionally directly work with the files in Deployment

 Beware: A call to koremake overwrites them

GLSL in Kore

KOM – Multimedia Communications Lab 99

#include <Kore/Graphics/Graphics.h>

Straight forward API

Set uniforms ala

ConstantLocation loc = program->getConstantLocation(„bla“);

Graphics::setFloat(loc, 2.0f);

Coordinate system is (-1 to 1, -1 to 1, -1 to 1) like in OpenGL

Kore Graphics

KOM – Multimedia Communications Lab 100

OpenGL Shading Language

Types of shaders

Input and Output

Operations

More info: „Orange Book“ (OpenGL

Shading Language)

Conclusion

KOM – Multimedia Communications Lab 101

Very nicely done “GTA V – Graphics Study”

http://www.adriancourreges.com/blog/2015/11/02/gta-v-graphics-

study/

See it in action

http://www.adriancourreges.com/blog/2015/11/02/gta-v-graphics-study/

