
© author(s) of these slides including research results from the KOM research network and TU Darmstadt; otherwise it is specified at the respective slide

23-Jan-16

Prof. Dr.-Ing. Ralf Steinmetz

KOM - Multimedia Communications Lab

Template all v.3.4

PPT-for-all___v.3.4_office2010___2012.09.10.pptx

Game Technology

Optional Lecture 15 – 13.2.2015

Scripting

Dr.-Ing. Florian Mehm

Dipl-Inf. Robert Konrad

KOM – Multimedia Communications Lab 2

Zork Implementation Language

(ZIL)

 1979

 Created by Infocom to facilitate the

creation of interactive fiction titles

 Compiles to code for a virtual

machine  Z-Machine

http://xlisp.org/zil.pdf

History

KOM – Multimedia Communications Lab 3

AGI – Adventure Game Interpreter

 1984

 Created by Sierra On-Line for

graphical adventure games

 First used fully in King‘s Quest

 Superseded by SCI – Sierra Creative

Interpreter

if (said("look","door")) {

if (posn(ego,0,120,159,167)) {

print("These doors are strongly

built

to keep out unwanted visitors.");

}

else {

print("You can't see them from

here.");

}

}

History

KOM – Multimedia Communications Lab 4

SCUMM – Script Creation Utility

for Maniac Mansion

 1987

 Created by Lucasfilm Games for…

Maniac Mansion

cut-scene {

...

actor nurse-edna in-room edna-bedroom

at 60,20

camera-follow nurse-edna

actor nurse-edna walk-to 30,20

wait-for-actor nurse-edna

say-line nurse-edna "WHATS'S YOUR

POINT ED!!!"

wait-for-talking nurse-edna

...

}

History

KOM – Multimedia Communications Lab 5

Action Code Script

 1995

 Created by Raven Software for

Hexen, extending the original Doom

engine

 Allowed scripting events during a

level

SCRIPT 4 (void)

{

suspend;

suspend; // The statements "absorb" the

effect of the two first toggles, whichever

they are

ambientsound("Chat",127);

printbold(s:"SEQUENCE COMPLETED!");

}

History

KOM – Multimedia Communications Lab 6

QuakeC

 1996

 Created by id Software to control

Quake

void (float v) ai_berserk =

{

if (self.health > 25)

{

ai_run (v);

}

else

{

ai_run (v * 1.5); // adjust to your

taste

self.nextthink = time + 0.075; //

adjust to your taste

}

};

History

KOM – Multimedia Communications Lab 7

UnrealScript
 Developed in 1998 for the first Unreal

Can extend the class hierarchy of Unreal

class HappyHUD extends HUD

config(Game);

//VARS

var String joyMessage;

var FONT joyFont;

…

function DrawHUD()

{

local string StringMessage;

//projection of ray hit location

local vector HitLocation, HitNormal;

//get origin and dir

Canvas.DeProject(MousePosition, WorldOrigin, WorldDirection);

StringMessage = "MouseX" @ MousePosition.X @ "MouseY" @ MousePosition.Y;

History

KOM – Multimedia Communications Lab 8

Designer-Friendly

 Designers, non-programmers are enabled to work on the game directly, without

needing programmer resources (ideally…)

 Quickly change values, …

Easy to learn

 Often reduced complexity compared to C++ or similar languages

 Often no memory management, pointers, …

Adaptable

 Many scripting languages are flexible

 E.g. Ruby or Lua allow adapting the language itself, e.g. to create a domain-

specific language

Advantages of Scripting Languages

KOM – Multimedia Communications Lab 9

Concurrency

 Coroutines

 Functions that can be interrupted and continued

No compilation

 No additional time during compiling the game (engine)

 Can be switched during runtime

 Downside: Often slower than compiled code

Mod-support

 Allows players to change the game using the scripting language

 Increases shelf-life

Advantages of Scripting Languages

KOM – Multimedia Communications Lab 10

Data-definition languages

 Create data structures that control the game engine

 E.g. LISP-dialect used by Naughty Dog

(define-export *player-start*

(new locator

:trans *origin*

:rot (axis-angle->quaternion *y-axis* 45)

))

Runtime scripting languages

 Control the game during runtime

 All examples in the history slides are of this kind

Runtime vs. Data Definition

KOM – Multimedia Communications Lab 11

Interpreted

 Flexibility, portability and rapid iteration

 Virtual machine  port the VM to port the scripts

Lightweight

 Simple, low memory footprints

Support for rapid iteration

 Quicker turnaround time

 See changes immediately/after a restart

Convenience

 Tuned for the purpose in the game

Common language properties

KOM – Multimedia Communications Lab 12

All languages we have seen so far

Special case: Natural-language Programming

Can be found in Inform 7 (interactive fiction tool)

The shower is here. It is fixed in place. "Opposite the

mirror is the shower, which is closed." The description of

the shower is "When it's open, you get in it to take a

shower. Right now it's closed, keeping you from using it.”

Instead of opening or entering the shower, say "It is locked

down until after the ship makes its jump to hyperspace."

Textual Languages

KOM – Multimedia Communications Lab 13

All languages we have seen so far

Special case: Natural-language Programming

Can be found in Inform 7 (interactive fiction tool)

The shower is here. It is fixed in place. "Opposite the

mirror is the shower, which is closed." The description of

the shower is "When it's open, you get in it to take a

shower. Right now it's closed, keeping you from using it.”

Instead of opening or entering the shower, say "It is locked

down until after the ship makes its jump to hyperspace."

http://inform7.com/

Textual Languages

KOM – Multimedia Communications Lab 14

http://www.lua.org/

Development started in 1993 at Pontifical

Catholic University of Rio de Janeiro

Small language core

„Events“

 Fired when operators/functions are called, …

 Native code can register to handle them

Tags

 Code called when events are fired

 Allow Lua behaviour itself to be changed

Lua

http://www.lua.org/

KOM – Multimedia Communications Lab 15

Used in Grim Fandango

http://www.lua.org/wshop05/Mogul.pdf

 – Dialogue

 – Puzzle logic

 – UI/controls

 – Menus

 Engine handles only animations, backgrounds, sound, rendering,

choreography, etc etc etc... But those aren't Grim Fandango

Lua Example

http://www.lua.org/wshop05/Mogul.pdf

KOM – Multimedia Communications Lab 16

https://www.python.org/

Development started in 1989 by Guido van Rossum as a hobby

project

Easier to learn for non-programmers than other languages

Disadvantages: Large size and speed

 Relies on hash table lookups

Eve Online server almost completely written in Stackless Python

Python

https://www.python.org/

KOM – Multimedia Communications Lab 17

Emerging trend in game tools

Designer-friendly, easy to debug/visualize scripts

Can become complex if the wrong level of abstraction is chosen

Visual Languages

KOM – Multimedia Communications Lab 18

Visual Languages: Scratch, Storytelling Alice

KOM – Multimedia Communications Lab 19

Added in Unreal Engine 4

Can modify almost everything in the game

Can extend C++ classes

Graph-based scripting language

Visual Language: Unreal Blueprint

KOM – Multimedia Communications Lab 20

Game dev forum comparison

KOM – Multimedia Communications Lab 21

Can interact with C++ code

Exposed via preprocessor magic

UFUNCTION(BlueprintCallable, Category = "GameTech")

float Clamp(float Value, float Lower, float Upper);

Unreal Blueprints

KOM – Multimedia Communications Lab 22

UFUNCTION(BlueprintCallable, Category = "GameTech")

float CurrentHealth() const;

Unreal Blueprints

KOM – Multimedia Communications Lab 23

Programming in vs. into the language

KOM – Multimedia Communications Lab 24

Programming in vs. into the language

KOM – Multimedia Communications Lab 25

Combine simple operations

Functions as complex nodes

Advantages

 Debugging: Can show intermediate steps

 Duality Numbers/Colors

 Easy re-use of smaller graph elements

Visual Shader Programming

KOM – Multimedia Communications Lab 26

Creating a rounded progress bar

Usual approach

 Export a rounded gradient

 Cut off at a specified alpha between 0 and 1

 Problem: Can have floating point inaccuracies due to compression

Alternative: Create the required gradients in a shader

Shader Programming Example

KOM – Multimedia Communications Lab 27

Gradient supplied as an image

KOM – Multimedia Communications Lab 28

Gradient created in the shader

KOM – Multimedia Communications Lab 29

Visual debugging

KOM – Multimedia Communications Lab 30

Result

KOM – Multimedia Communications Lab 31

Single branch tree

 Analogue to function without conditions or jumps

 Easiest to implement, but very inflexible

Single branch tree with jumps

 Uses in first version of Unity Adventure Creator

 …probably out of necessity

Trees

 Allow conditions to be visualized effectively

Graph types for visual scripting languages

KOM – Multimedia Communications Lab 32

Series-Parallel Digraphs

 Source and Drain similar to electrical

circuit

 Always ends in a node

 Advantage over tree: Can be be

layouted well automatically, works for

scripts with branches and a common

end

Graph

 No restrictions

 Most often freely drawn by designer

 Hard to layout automatically

  Most common for visual scripting

languages in games

Graph types for visual scripting languages

KOM – Multimedia Communications Lab 33

For specifying choreographed events

Scrubbing

Can be mixed, e.g. Timelines in UMG (Blueprint Unreal Engine 4)

Timelines

KOM – Multimedia Communications Lab 34

Passed around implicitly

 Arguments to individual actions

 Look up, e.g. from a blackboard

architecture

Passed around explicitly in the

graph

 Exit slots for output variables

 Input slots for input

 Advantage: Can create nodes to

change input

Data in visual scripting languages

+
A

A

A +B

Say "Well done"

Play Cutscene

KOM – Multimedia Communications Lab 35

If we restrict the domain of our language, we gain specialization and

convenience at the cost of generality

One extreme example: Unreal Blueprints

 Replacement for general-purpose programming language

 Operate on numbers, strings, …

 Define functions, use if/else, switch, …

Domain-Specificity

KOM – Multimedia Communications Lab 36

Example from Kha/Haxe-based VR adventure

KOM – Multimedia Communications Lab 37

game.AddInventoryItem("Book");

game.DrawSubImage2("examine_bookshelf", "atlas", 1173,

579, 366, 241, 2082, 1154, 366, 241);

game.PlaySound("add_inventory");

game.DisableHotspot("Instructions");

Advantages

 Can provide specific commands, e.g. Character.Say  play sound, show

dialogue, …

 Easier for non-programmers

Note: We can build from general-purpose languages

Domain-Specificity

KOM – Multimedia Communications Lab 38

Scripted Callbacks

 Most of the behaviour is hard-coded

 Code calls hook functions that are implemented in scripting language

Scripted Event Handlers

 Special case of callbacks

 Allows game objects to react to certain types of events

Extending game object types/define new ones

 Via inheritance or composition/aggregation

 E.g. UnrealScript

Architectures for Scripting

KOM – Multimedia Communications Lab 39

Scripted Components or properties

 In component-based game engine architectures

 Define the component by the scripting language

 Used in Dungeon Siege (2002)

 Used by Unity

Script-driven engine systems

 Whole sub-system created in scripting language

 E.g. game object model in script

 Only calls hard-coded parts when needed (e.g. performance-critical parts)

Script-driven games

 Mainly script, game engine more of a library

 E.g. Panda3D

Architectures for Scripting

KOM – Multimedia Communications Lab 40

Embed the virtual machine (often written in C or C++)

Interface to/from native code

 Functional language

 Look up the function‘s byte code and run it, providing arguments

 Object-oriented language

 Create/destroy instances, call member functions

 Two-way communication

 Allow script functions to call native code

 Often realized by registering functions with the scripting language

 Can be automized if the native language supports RTTI (e.g. see Lua

integration into C#)

Game Engine Integration

KOM – Multimedia Communications Lab 41

Referring to Game Objects

Numerical Handles

 Simple to use/set up

 Can be confusing

Strings with names

 Easier to use

 More memory used, string comparisons, miss-types names

Hashed string ids

 Reduce to integer for the engine

Game Engine Integration

KOM – Multimedia Communications Lab 42

As seen in the AI lecture, FSM are often at the core of AI and game

logic code

Specific support in the scripting language

 Custom syntax for states

 Mirrored in the game object model

 Example Uncharted Engine

 Each script can have multiple states

 Different event handlers, …

AI Scripting - Finite State Machines

KOM – Multimedia Communications Lab 43https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/HowUE4BehaviorTreesDiffer/index.ht

ml

Unreal Behaviour Trees

KOM – Multimedia Communications Lab 44

Usually done via cooperative multitasking

Scripts explicitly yield to other scripts

 Wait for x seconds

 Wait for x frames

Examples

 Can be realized in Lua

 Unity

Synchronized via signals

 E.g. WAIT_UNTIL(signal)

Multithreaded scripts

KOM – Multimedia Communications Lab 45

Non-programmer friendly

 Designers can test/iterate quickly

 Mod support

Quick iteration times

 More simple to program than full programming language

 Hot reload

But: Not for everything

 Performance critical code

 Complex code

Domain-specificity

Summary

KOM – Multimedia Communications Lab 46

ISO/IEC 14882:2011

Aka C++11

Many features used in current game engines

 E.g. UE4 uses many of these additions

Depends on your target compilers

Depends on your general library architecture

 E.g. if templates are used at all

 But some features a win in most situations, e.g. move semantics

C++ 11, C++14 (and Games)

KOM – Multimedia Communications Lab 47

class Foo;

shared_ptr<Foo> myFoo = new Foo();

shared_ptr<Foo> anotherFoo = myFoo;

anotherFoo = myFoo = nullptr; // The object previously

referenced is now deleted

shared_ptr

KOM – Multimedia Communications Lab 48

int x = 5;

auto x = 5;

vector<int> vec;

// instead of vector<int>::iterator itr

auto itr = vec.iterator();

int x = 3;

decltype(x) y = x; // same thing as auto y = x;

Auto, decltype

KOM – Multimedia Communications Lab 49

class Foo {

public: int x = 5;

int y = 4;

int arrray[5] {1,2,3,4};

}

Super convenient

Direct data initialization

KOM – Multimedia Communications Lab 50

[capture-list] (params) -> ret { body }

[] (int x) -> bool { return x > 5; }

int compare = 5;

[] (int x) -> bool { return x > compare; } // Will not

work, need to capture “compare”

int compare = 5; [compare] (int x) -> bool { return x >

compare; } // OK

Use for timers, search function predicates, …

Simple to declare function pointer

Lambda expressions

KOM – Multimedia Communications Lab 51

constexpr int sqr(int arg) {

return arg*arg;

}

Allows the compiler to compute the result at compile time

int array[sqr(5)]; //Works, allows the compiler to

compute array size during compilation

Not supported in Visual Studio 2013 

constexpr

KOM – Multimedia Communications Lab 52

static_assert (bool_constexpr , message);

Asserts properties of the code during compilation

Boolean parameter has to be a constexpr for obvious reasons

Static_assert

KOM – Multimedia Communications Lab 53

TArray<AActor*> Actors;

for (int32 ActorIndex=0; ActorIndex<Actors.Num();

ActorsIndex++) {

AActor* Actor = Actors[ActorIndex];

Actor->SetActorLocation(NewLocation);

}

for (AActor* Actor : Actors) {

Actor->SetActorLocation(NewLocation);

}

Range-based for loops

KOM – Multimedia Communications Lab 54

x+(y*z);

(y * z) is an rvalue

 It can only be on the right side of =

A = (y * z); // Ok

(y * z) = A; // Not ok

MemoryPage(MemoryPage&& other): size(0), buf(nullptr) {

// pilfer other’s resource

size=other.size;

buf=other.buf;

// reset other

other.size=0;

other.buf=nullptr;

}

 We know that a MemoryPage&& reference will not be used further

 No need to copy the object first

Move semantics

KOM – Multimedia Communications Lab 55

Like a typedef

But also compatible with templates

template <typename T>

using my_type = whatever<T>;

my_type<int> variable;

template <typename U> struct baz {

my_type<U> _var_member;

}

Using

KOM – Multimedia Communications Lab 56

Not as widely adopted as C++11 yet

http://www.drdobbs.com/cpp/the-c14-standard-what-you-need-to-

know/240169034

Improvement of C++11 features

E.g. auto for return types

Generic lambdas

Deprecated attribute

Binary literals

C++14

http://www.drdobbs.com/cpp/the-c14-standard-what-you-need-to-know/240169034

KOM – Multimedia Communications Lab 57

Thank you!

