
© author(s) of these slides including research results from the KOM research network and TU Darmstadt; otherwise it is specified at the respective slide

23-Jan-16

Prof. Dr.-Ing. Ralf Steinmetz

KOM - Multimedia Communications Lab

Template all v.3.4

PPT-for-all___v.3.4_office2010___2012.09.10.pptx

Game Technology

Lecture 11 – 16.01.2015

Large Game Worlds and Streaming

Dipl-Inf. Robert Konrad

Dr.-Ing. Florian Mehm

KOM – Multimedia Communications Lab 2

KOM – Multimedia Communications Lab 3

Typical hardware requirements

 8 GiB RAM

 2 GiB Video-RAM

 50 GiB on disk

All SNES games ever (including all language versions)

 ~3000 games

 ~4.5 GiB

Today‘s Games

KOM – Multimedia Communications Lab 4

One uncompressed texture

 4096 x 4096 x 4 Bytes = 67108864 Bytes = 64 MiB

 2 GiB / 64 MiB = 32

 Physically based rendering – typically 4 textures

Today‘s Data

KOM – Multimedia Communications Lab 5

Killzone 4 CPU data

KOM – Multimedia Communications Lab 6

Killzone 4 GPU data

KOM – Multimedia Communications Lab 7

PNG

 Lossless

 Compression highly dependent on image content

JPEG

 Lossy

 Generally strong compression

Both

 Slow decompression

 Can slow down loading times

 Not possible to access a single pixel while compressed

 Not usable for image computations aka not usable as a texture format

PNG and JPEG

KOM – Multimedia Communications Lab 8

Many different formats

 S3TC, PVRTC, ASTC,…

 Has to be supported by GPU and Graphics API

 Of course much of it is patented and hard to standardize

Design goals

 High compression

 Low visual degradation

 Efficient single pixel access

  What we need during fragment shader

 Constant size of a pixel or a pixel block

Texture Compression

KOM – Multimedia Communications Lab 9

Prerendered images for a mobile VR game

Recommendation for Gear VR: 4096x2048

Device: Note 4, 3GB RAM, shared between GPU and CPU

 Uncompressed images: 33,55 MB

 PNG: ~11 MB

Need to minimize data transfer and storage (complex format), need to

minimize storage in GPU memory (fast format)

Example

KOM – Multimedia Communications Lab 10

2K Texture

 Uncompressed: 4 byte * 2048 * 2048 = 16.77 MB

 DXT1: 2048 * 2048 / 16 * 8 bytes = 2.1 MB

 PNG: ~6 MB (Depends on content and compression details)

 JPEG: ~1 MB (Depends on content and compression details)

Save compressed for GPU (e.g. DXT)

 Quick file load direct into memory

 Fast, simple

 Requires much space

Save in complex format, convert to compressed while loading

 Smaller file sizes (e.g. mobile)

 Longer loading times

Strategies

KOM – Multimedia Communications Lab 11

Less than 8 bits per color might be ok

The eye‘s color resolution is less then its intensity resolution

Neighboring pixels likely have similar colors

Possible compression strategies

KOM – Multimedia Communications Lab 12

Originally developed by S3 Graphics for the Savage 3D graphics

accelerator

Also known as DXTn/DXTC (DirectX names)

De-facto standard for OpenGL implementations

Series of 5 algorithms that handle compression differently

 Mainly depending on the way alpha is treated

Block-based compression algorithm

 Input always 4x4 pixel block

 Output 64 or 128 bits

S3TC

KOM – Multimedia Communications Lab 13

Input: 4x4 block

Output

 c0: Color encoded with r=5,g=6,b=5 bits (16 bits)

 c1: Color encoded with r=5,g=6,b=5 bits (16 bits)

 4x4 lookup table with 2 bits per pixel (32 bits)

Intermediate values

 if (c0 > c1)

 c2 = 2/3 c0 + 1/3 c1

 c3 = 1/3 c0 + 2/3 c2

if (c0 <= c1)

 c2 = 1/2 c0 + 1/2 c1

 c3 = transparent black

DXT1

KOM – Multimedia Communications Lab 14

Dotted line: Absorption of cones, Colored lines: Absorption of rods

Overlap in green area  human eyes can better differentiate

variations of green than other colors (& 555 would waste 1 bit...)

https://commons.wikimedia.org/wiki/File:Cone-response.png

Why green?

KOM – Multimedia Communications Lab 15

Input block

4x4, 32 bits per pixel

DXT1 example

FECB00

6AADE4BDE18A

0073CF 4D5357B3995D

00A1DE72C7E7

B3995D 0073CF

BDE18A 6AADE4

72C7E7 72C7E7 6AADE4 6AADE4

KOM – Multimedia Communications Lab 16

Choose two colors

Here: Max distance

DXT1 example

FECB00

6AADE4BDE18A

0073CF 4D5357B3995D

00A1DE72C7E7

B3995D 0073CF

BDE18A 6AADE4

72C7E7 72C7E7 6AADE4 6AADE4

KOM – Multimedia Communications Lab 17

Original color 32 bits (here: alpha = FF)

Encoded color 16 bits

Decoded color 32 bits

 quantization error

Encode using R5G6B5

FECB00 00A1DE

F8C800 00A0D8

FE40 051B

KOM – Multimedia Communications Lab 18

Choose c2 and c3 to lie at 1/3 and 2/3 between c0 and c1

Build the palette

F8C800 00A0D853AD90A5BB48

KOM – Multimedia Communications Lab 19

Determines the quality of the result

Can apply several strategies

 Local: Only within our block

 Global: Optimize over the image

Principal Component Analysis

"Bounding Box", choose minimum and maximum values along 3 axes

Choosing endpoints

KOM – Multimedia Communications Lab 20

Find the closest colors

c0

c1

c2 c1 c3

c2 c2 c1 c3

c2 c3 c3

c3 c3 c3 c3

Compare to colors

in the block to

c0 to c3

KOM – Multimedia Communications Lab 21

Find the closest colors

00

01

10 01 11

10 10 01 11

10 11 11

11 11 11 11

Color index can be

encoded in 2 bits

KOM – Multimedia Communications Lab 22

c0 = 0xFE40; // 565 – 16 bits

c1 = 0x051B; // 565 – 16 bits

LookupTable =

{00, 10, 01, 11, 10, 10, 01, 11, 10, 11, 01, 11}; // 16x2 bits = 32 bits

Compressed block

KOM – Multimedia Communications Lab 23

Comparison

KOM – Multimedia Communications Lab 24

Well suited for similar gradients

 We only lose accuracy due to quantization

DXT1 Examples

KOM – Multimedia Communications Lab 25

Worst case: Colors not on a gradient

 We can‘t preserve all colors

DXT1 Examples

KOM – Multimedia Communications Lab 26

2x4 blocks

Base color: RGB444 (12 bits)

Luminance modifier lookup index (2 bits per pixel) (16 bits)

Table specifier (4 bits)

PACKMAN

KOM – Multimedia Communications Lab 27

Ericsson Texture Compression

PACKMAN well suited for images

with similar luminance

But not well suited for changes in

chrominance

Add an option to combine two

2x4 blocks to one 4x4 block

with less compression of

chrominance

 Can adapt to different

regions of the image

PACKMAN -> iPACKMAN = ETC1

KOM – Multimedia Communications Lab 28

PVRTC

 PowerVR Texture Compression

PVRTC

KOM – Multimedia Communications Lab 29

Compression for images might not be optimal for other textures

 But it might just work

 Swizzling channels can help

 No Alpha used for normal maps

 Some algorithms encode alpha better than other values

 Move one channel to alpha

3Dc

 x²+y²+z²=1

 z²=1-x²-y²

 One value can be omitted

 Can save normals unnormalized, recover later

 Plus block compression

Normal Maps, Masks, ...

KOM – Multimedia Communications Lab 30

Let the artists do the job

Repeat images over and over

 Nobody might notice it when you do it cleverly

Manual Compression

KOM – Multimedia Communications Lab 31

Tilemaps/Tilesets

KOM – Multimedia Communications Lab 32

Manual Compression

Uncharted 3, 2011

KOM – Multimedia Communications Lab 33

Tile Editors

http://www.mapeditor.org/

KOM – Multimedia Communications Lab 34

Pitfall: The Mayan Adventure (1994)

KOM – Multimedia Communications Lab 35

Warcraft 3 (2002)

KOM – Multimedia Communications Lab 36

Used when a specific art look is wanted

Bilinear Filtering

 Would have to use texels from two tiles at tile boundaries

 Complicated

 Expensive, Rarely used

http://forum.unity3d.com/attachments/documentation-pdf.38362/

Tile textures in 3D

http://forum.unity3d.com/attachments/documentation-pdf.38362/

KOM – Multimedia Communications Lab 37

Multitexturing

KOM – Multimedia Communications Lab 38

Multitexturing

KOM – Multimedia Communications Lab 39

Multitexturing

KOM – Multimedia Communications Lab 40

Broad colors in a base layer

Details in a repeated texture

Add details, especially close to

the player

http://www.chadvernon.com/blog/resources/directx9/detailing-a-terrain-with-multitexturing/

Multitexturing

http://www.chadvernon.com/blog/resources/directx9/detailing-a-terrain-with-multitexturing/

KOM – Multimedia Communications Lab 41

Used to apply textures to surfaces

For temporary/dynamic changes, such as bullet holes, ...

Simple implementation: Quad with alpha mask

 Watch out for z-fighting

Complex implementation: Projection onto a surface

http://cdn.wolfire.com/blog/decalgeom/decalcheckerboard.jpg

Decals

KOM – Multimedia Communications Lab 42

Terrain texturing is often a 2D operation applied to a 3D surface

Good for flat (but boring) terrain

Bad for steep cliffs

Terrain Texturing

KOM – Multimedia Communications Lab 43

Project the texture onto the geometry from all three axes

Uses no UVs, but world coordinates

Triplanar Shading

KOM – Multimedia Communications Lab 44

Triplanar Shading Result

KOM – Multimedia Communications Lab 45http://www.martinpalko.com/triplanar-mapping/

Triplanar Shading Visualization

http://www.martinpalko.com/triplanar-mapping/

KOM – Multimedia Communications Lab 46

Terrain built from 3D tiles (voxels in the original)

Textures applied by triplanar shading

https://www.youtube.com/watch?v=RIsZ_y66HTI

Example: Outcast Reboot HD

KOM – Multimedia Communications Lab 47

Good lighting can hide a lack of details

KOM – Multimedia Communications Lab 48

Performance

 More textures, less performance

 Precalculating which polys actually use more textures can help

Needs good tool support

 Scary communication with artists

Problems

KOM – Multimedia Communications Lab 49

Coarse Streaming

 Load and replace complete assets

Fine Grained Streaming

 Load and show/play a single asset bit by bit

Streaming

KOM – Multimedia Communications Lab 50

Similar to level of detail systems

 Load big textures for near objects

 Kick out big textures for far away objects

 Maybe blend texture changes in and out

http://www.opensg.org/htdocs/doc-1.8/lod.png

Coarse Streaming

KOM – Multimedia Communications Lab 51

Disks are slow and unreliable

 No timing guarantees at all

 Load textures in a second thread, always have an emergency strategy ready

(keep super low resolution textures of everything in RAM)

Changing textures at runtime is problematic

 Driver might decide to convert the texture

 Easier on console

 Probably easier with Direct3D 12

Problems

KOM – Multimedia Communications Lab 52

Fine grained texture streaming

Rage (2011)

KOM – Multimedia Communications Lab 53

Really huge textures

 Rage supports textures of up to 128000×128000

 That‘s ~60 GiB

Compression

 Texture is highly compressed on disk

 Using lossy JPEG like compression

One texture for everything

 Complete world in one texture

 No restrictions for artists

 But toolsets provide classical multitexturing tricks

 Artists don‘t manually paint 128000x128000 pixels

MegaTextures

KOM – Multimedia Communications Lab 54

Similar to virtual memory

 Application (= pixel shader) believes that there is a huge, continuous area of
memory (= texture) it can work on

 Operating system (= texture manager) provides required memory pages by
mapping them

For details, see GDC Talk by Sean Barret:
https://www.youtube.com/watch?v=MejJL87yNgI

MegaTextures Implementation

KOM – Multimedia Communications Lab 55

Similar to mip maps

We provide different resolutions of the MegaTexture

Smaller resolution version should encompass everything we need to

sample

Level of Detail

KOM – Multimedia Communications Lab 56

Geometry is split up in tiles

 Engine determines screen size of visible tiles

 Loads texture parts in varying sizes to optimize current view

MegaTextures

KOM – Multimedia Communications Lab 57https://www.youtube.com/watch?v=YNilHiBpVic

MegaTextures

KOM – Multimedia Communications Lab 58

Geometry

Geometry Wars, 2003

KOM – Multimedia Communications Lab 59

Not widely used

No hardware support

Special strategies for animations

 Like skeletal animations, which are tiny

 Replace keyframe blending by raw key frames at large distances

"Walk-cycle-poses". Licensed under CC BY 3.0 via Wikipedia - https://en.wikipedia.org/wiki/File:Walk-

cycle-poses.jpg#/media/File:Walk-cycle-poses.jpg

Geometry Compression

KOM – Multimedia Communications Lab 60

Remove super detailed geometry

Replace with normal maps

 Which is a form of compression by itself

 Plus normal can be further compressed

Normal Maps

KOM – Multimedia Communications Lab 61

Same strategies as for textures

 Could be directly plugged into a level of detail system

Coarse Geometry Streaming

KOM – Multimedia Communications Lab 62

Doom (planned for 2016)

id Tech 6

The future – Fine-grained geometry streaming?

KOM – Multimedia Communications Lab 63

Voxels

 3D Blocks

 Can raycast/raytrace relatively

efficiently

Octrees

 Subdivide 3D space regularly into 8

sub-spaces

Sparse Voxel Octrees

KOM – Multimedia Communications Lab 64Animated Sparse Voxel Octrees, Dennis Bautembach

Sparse Voxel Octree

KOM – Multimedia Communications Lab 65

Encode voxelized environment/meshes as octrees

Many cells will be empty  sparse

Cell in an octree contains all children

Sparse Voxel Octree

KOM – Multimedia Communications Lab 66https://www.youtube.com/watch?v=km0DpZUgvbg

Sparse Voxel Octree

KOM – Multimedia Communications Lab 67

Just Y instead of X/Y/Z

Height Maps

KOM – Multimedia Communications Lab 68

Not interested in generation here

 Can use perlin noise, loads of algorithms

Want to handle the terrain efficiently

Naive approach

 Create one vertex at each height map location

 Scale to the size of the terrain

Problems

 Same resolution regardless of need

 Same resolution regardless of distance to world

Terrain algorithms

KOM – Multimedia Communications Lab 69

Real-time Optimally Adapting

Meshes

 Based on Binary Triangle Tree

 Define how to move between higher

and lower resolution

 Constantly adapt based on distance

https://graphics.llnl.gov/ROAM/roam.pdf

ROAM

https://graphics.llnl.gov/ROAM/roam.pdf

KOM – Multimedia Communications Lab 70

Use GPU power

Submit a mesh

Middle/close to camera: High

resolution

Fringes: Low Resolution

Move it to the correct positions in

the vertex shader

http://casual-effects.blogspot.de/2014/04/fast-terrain-rendering-with-continuous.html

Today

http://casual-effects.blogspot.de/2014/04/fast-terrain-rendering-with-continuous.html

KOM – Multimedia Communications Lab 71

Included in current game

engines

Very course geometry

streaming

Need to watch out for

objects and data

 Pathfinding

 AIs

 …

Level Streaming

KOM – Multimedia Communications Lab 72

Chunk = 16 x 16 x 256 blocks

Default area of interest (multiplayer): 21x21 chunks around

the player

 Inside the area: Normal simulation

 Outside the area: Serialized to disk, nothing updated

When streaming new chunks

 Unknown chunks: PCG

 Known chunks: Load from data

http://minecraft-de.gamepedia.com/Chunk

Minecraft

KOM – Multimedia Communications Lab 73

Naive approach: We only simulate the things around us

E.g. a role-playing game: Only the NPCs around us

 Follow their daily routines

 At day, work, at night, stay at home/in an inn

Player comes into vicinity

 Spawn as if they were completely new game objects

 Tick them all the time, even if they are not visible

 Forward the simulation to an appropriate state

 Reduced LOD version

Handling game objects in streaming levels

KOM – Multimedia Communications Lab 74

Simple to implement

Depending on the game, effects can range from unnoticeable to

game-breaking

Especially noticeable if NPCs always follow a script

Spawn as new objects

KOM – Multimedia Communications Lab 75

Simple to implement

Depending on the game, effects can range from unnoticeable to

game-breaking

Especially noticeable if NPCs always follow a script

Spawn as new objects

KOM – Multimedia Communications Lab 76

+The states of the objects are always correct

- Can be very costly

Interdependencies with other objects and the level

 Moving NPCs need to know about the level geometry to navigate

 NPCs who interact with each other

 Can counteract the idea of streaming

Continuously updating all objects

KOM – Multimedia Communications Lab 77

+The states of the objects are always correct

- Can be very costly

Interdependencies with other objects and the level

 Moving NPCs need to know about the level geometry to navigate

 NPCs who interact with each other

 Can counteract the idea of streaming

Continuously updating all objects

KOM – Multimedia Communications Lab 78

Similar to recreating persistent objects (e.g. for networked games or

save games)

Example

 An NPC in a RPG

 When it left the player’s streaming radius the last time, its state was persisted

 After spawning again, the state is restored and forwarded

 E.g. if 4 hours passed, the NPCs stamina/hunger attribute is reduced by an

equivalent amount

No ticks while not active

Forward to an appropriate state

KOM – Multimedia Communications Lab 79

When objects go out of relevancy, they get replaced by LOD versions

Example: GTA-style system

 In relevancy radius: Fully accurate version of the car

 Close to relevancy radius: Fully accurate version, so cars don’t pop up once

they are close enough

 Further away: Simulated version only, simplified collision and navigation

 Far away: Replaced by a simulation of the traffic density in a whole block

Reduced LOD version

KOM – Multimedia Communications Lab 80

mp3 and similar compressed formats

 Nothing special – at least not anymore

Coarse streaming for sound effects

 Easy

 Sound effects are short

 Sound effects don’t stay on screen

 Sound effects can stay in CPU RAM

Fine grained streaming for music and maybe speech

 Even mp3 players do it

Sound

KOM – Multimedia Communications Lab 81

Large and small scale simultaneously

KOM – Multimedia Communications Lab 82

32 bit floats

 “total precision is 24 bits (equivalent to log10(2
24) ≈ 7.225 decimal digits)”

 Can be a little tight for big worlds

Use 64 bit floats for positions

 Hard to integrate 32 bit physics engines

Split and Shift the world

 Split the world

 Shift the closest parts to a position nearer at the camera

Really Big Worlds

KOM – Multimedia Communications Lab 83

As in Minecraft – Generate parts of the world not yet seen

„Infinite Detail“ Engines

 Fill in PCG details after a certain level of detail

Combine PCG and Streaming

KOM – Multimedia Communications Lab 84

Handling more data than we can fit into memory at once

 Reduce the actual data

 Compress the data

 Load only the data that is needed when it is needed

Don‘t let the player notice

 Low Quality/Quality jumps/Compression artifacts

 LOD switches

 Streamed changes popping up

Summary

KOM – Multimedia Communications Lab 85

C++ - Managing large codebases

KOM – Multimedia Communications Lab 86

"A C program need not all be translated at the same time. The text of

the program is kept in units called source files, (or preprocessing

files) in this International Standard. A source file together with all

the headers and source files included via the preprocessing

directive #include is known as a preprocessing translation unit.

After preprocessing, a preprocessing translation unit is called a

translation unit."

The more headers we include, the larger the translation units get

Translation Units

KOM – Multimedia Communications Lab 87

Header

#include „Foo.h“

Foo* bar;

.cpp:

#include „Header.h“

bar->doSomething();

Header

class Foo;

Foo* bar;

.cpp

#include „Header.h“

#include „Foo.h“

bar->doSomething();

Forward declarations

KOM – Multimedia Communications Lab 88

Include only the things needed to compile

Include as much as possible only in the source file

 Prevents chains of includes

 Even if included only once each, will pull unneeded things into the headers

Use forward declarations

 Also helps with cyclical dependencies (if they arise from the design in the first

place)

Clashes with inlining

Clashes with templates

Minimizing number of headers

KOM – Multimedia Communications Lab 89

Hide construction of specific objects in Factory classes

 Only the factory needs the includes for the specific classes

<div>Icon made by Freepik from www.flaticon.com is licensed under CC BY

Leaking need for includes

KOM – Multimedia Communications Lab 90

Standard header for everything in your project

Preprocessed to a binary format that is much faster for the compiler

But: Needs to be recreated when something changes

 Even only one header

 Balance between PCH recreation and compilation speedup

 Easy: Game PCH includes everything in the engine and libraries (should not

change)

 Harder: Classes that change little and are often re-used

Precompiled Header

KOM – Multimedia Communications Lab 91

Lump all cpp files together

Used by Unreal

Can load whole file to memory, can lump all includes together

But

 Need to recompile much more on average for a single change

 Include hell if order is changed an includes are not correct

"Unity builds"

KOM – Multimedia Communications Lab 92

Split up code into different modules

Ideally, no need to recompile all modules all the time

Can help with better API design

But harder if enforced in the middle of the project

Modules

KOM – Multimedia Communications Lab 93

Design upfront

Use Design Patterns

Handle includes well

 As few as possible

 Use forward declarations

 Use PCH appropriately

Balance options

 What goes in PCH

 Unity builds

Conclusion

KOM – Multimedia Communications Lab 94

Thanks

