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Short multiplayer history

First games — Local multiplayer
= Al not yet ready for use
= Simple to implement
» Lower hurdle for players who don’t know video games (= everyone in 1970 ;-)

Pong (1972), Computer Space (1971)




Flash Attack (1980)

Described by Ken Wassermann and Tim Stryker in BYTE, December
1980
FLASH ATTACE
COPYRIGHT (C)> 1986 BY
TIMOTHY STRYKER AND KENNETH MWASSERMAN

DO YOU KWANT INSTRUCTIONS? B

wuw.knoser.con/conmodore/f

https://www.yvoutube.com/watch?v=9RutlIBwoiA

http://archive.org/stream/byte-magazine-1980-12/1980 12 BYTE 05-
12 Adventure



https://www.youtube.com/watch?v=9RutllBwoiA
http://archive.org/stream/byte-magazine-1980-12/1980_12_BYTE_05-12_Adventure

Parallel port multiplayer

L

Userport (8 bit parallel communication)

Commodore PET (1977)




Parallel port multiplayer

2 programs need to coordinate when the bus is used for reading and
writing
Very limited communication possible




MIDI Maze (1987)

Atari ST, Up to 16 players connected via MIDI ports
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MIDI Maze GameBoy Port

Faceball 2000 (1991)
Supported 16 player multiplayer (only GB game)

Required 7 4-player adapters (requirement by Nintendo — developers
had developed a custom solution for the game)

j S {
.-f(-xf", »', 'Q -'“ J' ‘0’4‘;"/
>




Doom (1993)

Peer to peer multiplayer

Keyboard commands sampled at tics (1/35 s) and sent to all players
Game proceeds when received inputs by all players

Negative acknowledgements: If tic numbers do not match up, resend

T s e

AMMO




Quake (1996)

Client/Server with no prediction
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QuakeWorld (1996)

Update to allow internet multiplayer for Quake
Client/Server with Client-Side prediction
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LAN gameplay (1990s) Metrics
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Why the switch from Quake to
QuakeWorld?

10Base?2 Ethernet
= Latency: Minimal
» Bandwidth: 10 Mbps
= Packet loss: Almost non-existent
= Jitter: Almost none

» Fury at the player who interrupted the
connection: endless

“an elegant weapon for a
more civilized time”
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Internet

Study by Bungie in 2007

Baseline for 99% of Xbox ownwers

= Latency: 200ms one-way (ping of 400)

» 10% jitter (consistency of the connection — rate of packets arriving same as
sending)

» Bandwidth: 8KB/s up, 8 KB/s down
» Packet loss: Up to 5%

- Very different challenges

- LAN: Low latency, large bandwidth, reliable (except for people stumbling over
cables...)

- Internet: High latency, smaller bandwidth, jitter, unreliable

12



Multiplayer architectures
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Number of players
Networking technology

Gameplay implications
» Social factors
= Network metrics
» Gameplay requirements
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The Simpsons Arcade Game (1991)

14



One computer, multiple players

Trivial Iimplementation

No latencies

Uncompressed realtime 3D video chat

15



Saturn Bomberman (1996)
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Local multiplayer

Screen space restricted
Number of controllers restricted

Number of locally available players who understand Bomberman
severely restricted
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v ka‘wlwallpap:h\;qom
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Peer-to-Peer Lockstep

Synchronizes game step by step
» Send command data (go forward, move unit,...)
» Receive commands by all other players
» Simulate game step on all computers
» Repeat

19
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Example structure

struct MovementCommand {
unsigned int UnitlD;
float targetLocation[2];

|3
size_t s = sizeof(MovementCommand); //12 Bytes

Real-time strategy games about 1 command every 1.5 -2s

1 command/1.75s

1/1.75 commands per second --> 6.86 Bytes per second per Player
With 8 players: 54.86 Bytes per second

20



Turns

Player 1 and player 2 send a command each
Game continues when all commands are sent and received

Command 1 ACK

Command 2 ACK

21



Turns

Player 2 is slow = Game runs slower

Command 1 ACK
Command 2 ACK
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Adjustment of turn lengths

Take the ping and the capabilities of the slowest machine into
account — measure constantly and adapt

Communications turn (200 msec) - scaled to 'round-trip ping' time estimates

Process all messages Frame Frame Frame
Frame - scaled tolrendering speed
50 msec a0 msec a0 msec 50 msec  zo#s

Communications turn (1000 msec) - scaled to 'round-trip ping' time estimates

FProcess all

Frame | Frame | Frame | Ca (3% | Frame | Frame | Frame | Frame | Frame | Frame
Messages

20 msec 20 frames, 0 msec each 20405

Communications turn (200 msec) - scaled to 'round-trip ping' time estimates

Frocess all messages Frame 3
Frame - scaled to rendering speed
100 msec 100 msec 10 s

http://www.gamasutra.com/view/feature/3094/1500 archers_on_a 288 network .php?print=1

23



Pro & Contra
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Low data rate
= Just high level game commands

Very fragile
» Requires complete determinism
= Requires every client to reliably send data
= One client hangs -> the game hangs

Maximizes latency
= Game has to wait for every one

Players can‘tjoin a running game easily
= \Would have to rerun all previous game commands

24



Debugging

Desynchronization errors

Serialize game states
» Maybe already needed for replay, save games, ...
» Exact, allows resetting the state, debugging
= Larger sizes for snapshots

Implement hashes for game states
= Containing everything relevant to the game
= |deally can do this quickly
= Small memory footprint

25
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Serializing and debugging

Manually
= Each object can implement functions for Serialization and Deserialization, write
and read relevant data

Save memory layout
= Simple, but can break easily
= References need to be fixed

Reflection system
= Not part of C++ natively

Finding which part of the state is corrupted
» During deserialization, compare the states
= Assert at the point where the states differ

26



Determinism

Make sure to separate between core and other parts
Core: Everything needed to calculate relevant game state

Advantages
» Can determine the game state easier
= Explicit which code needs to have network in mind
» Eleminate cross-talk

Cross-talk
» Imagine a random animation component
» float nextValue = rand(minValue, maxValue);
» Depends on frame rate
= &> Might or might take a random value away

27



Determinism
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Randomness
= Save your seeds
» Implement your own rand()
= Done

Calculations
= Integer calculations - easy
» Floating point calculations — a little weird
= Different optimizations on different compilers
» There is usually a ,strict IEEE 754" option
» Different CPUs
» x86 calculates in 80bits, then rounds to 32/64 bit

28
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Ideally
» Fast

= Captures all relevant information
» Few collisions (different game states with same hash)

Zobrist Hash
= Developed for chess programming
» Generate a random number for each piece on each field
= White pawn on Al: 8B8A 616B 8587 1AB6
» Black pawn on Al: 83AB C69D 2933 4FEC
» Encode a state as the XOR combination of all field states
= A1 XOR A2 XOR ....

29
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Peer-to-Peer Lockstep Today

Still used in strategy games
» Even realtime strategy

Not used in action games
= Because the internetz

Game design tricks used to hide latency
» Play an animation/sound immediately
= Move units after all clients agreed
= But: The longer the own units take to react, the more apparent it becomes

“More Work?” — Warcraft 3, 2002

Similar tricks used to hide Al calculations

30



Client/Server
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Server controls everything
Clients are like terminals

Complete game runs only on the server
» Clients send game commands
= Server sends game state

31



“A TECHNISCHE
NIVERS
Game State UNIVERSITAT
struct {

vec3 Position:
vec3 Rotation:;

AnimationID Animation:;

float AnimationState;

For each player

32
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Server

Simulates the complete game
= Everything that's relevant for the game state
* Including physics
= Not including cosmetics like particle effects

Does not depend on clients
= Clients can hang
» Clients can drop in and out
= Does not result in problems for other clients

33



Client
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Really dumb client
» Reads input, sends it to the server
» Does not actually run the game
» Just interpolates received game states
= Might run some simulations for effects work
* Menu animations
= Particle effects
» Physics which do not interfere with gameplay

34
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Interpolation

Client/Server can feel very stop-and-go
Players see individual frames as they come in

Interpolate between states

35



Pro & Contra
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Very robust
= Clients can hardly cause any problems
» Lags from one client do not propagate to other clients
» No cheating

Very laggy
= Everything lags
» Even basic movement lags
* The server simulates every player
» Size of game state has to be rather small

36



Client/Server today
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Outdated

37
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Client/Server with Client-Side Prediction

Mix of Client/Server and a little bit of Peer-to-Peer

Server is still the boss
= But clients predict the game state

38
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Prediction

King’s Quest V - 1990




Prediction
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Just run everything on the client and the server
= But no client-client-communication
» Determinism helps

Most of the time, predictions should be correct
= At least for the player character himself
» Makes controls snappy

For other players pure prediction
= Often incorrect

40
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Failed Predictions

KOM — Multimedia Communications Lab 41



Failed Predictions
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Use the corrected data
= Cause the server is the boss

Hide your mistakes
» Interpolate visuals to avoid jJumps
» Or let stuff jump around when out of view

42



Failed Predictions
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Clients receive only old data

Compare old received data and old predicted data

= When prediction was wrong
= Recalculate new current state based on received old state

* Then interpolate

43
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Failed Predictions

Can cause unfair situations
» Visuals show that an enemy was hit but he really wasn't

No real solution possible
= Virtual life is not fair :-(

44
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Physics States

Excellent series of blog posts: ,,Introduction to Networked Physics*
by Glenn Fiedler

http://gafferongames.com/networked-physics/introduction-to-
networked-physics/

GDC Talk available to watch:
http://gafferongames.com/2015/04/12/networking-for-physics-
programmers-is-now-free-to-view-in-the-gdc-vault/

Also well suited to recap the architectures

45
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Lockstep, Determinism
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Effects of lacking determinism
- Random number generation not synchronized

46



Lockstep, Determinism

Simulation with fixed determinism

47



Client/Server
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Client/Server
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Client/Server with Interpolation

50
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Network Protocols

All IP based

Everything just works like the internet

Much more information
= Communication Networks lectures
» Multimedia Communications Lab (KOM)
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IP

Internet Protocol

Packet based
= No direct connections
» Much like post packages
= Unreliable

52
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TCP/IP

Transmission Control Protocol

Direct connections

Reliable streams of data

Super easy

53
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TCP/IP

Builds on a package based protocol
Makes sure every package arrives

Makes sure all packages stay in the same order

54
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TCP/IP

Reorders packages

Requests missing packages again

- One missing package can cause huge delays

55
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Missed packages

Unacceptable for many applications

Mostly not important for games
» Positions from 30ms ago are outdated anyway
» Gets new positions all the time anyway

56
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UDP

User Datagram Protocol
Basically IP plus port numbers

Works with packages directly

57
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UDP

Use packages directly for game state

Implement TCP like functionality for other stuff
= Highscore lists,...

58
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UDP

Has additional difficulties
= Applications have to measure transfer rates

» Typical packet sizes (< 512 Bytes) are hopefully enough for one piece of game
state

59



Cheating
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Never trust the client.
Never put anything on the client.
The client is in the hands of the enemy.
Never ever ever forget this.

- Raph Koster, “The Laws of Online World Design”
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Cheating in Lockstep Multiplayer

Cheating client holds back sending commands until it knows the
other’s commands

» RTS game: Dispatch units to counter enemy movements
» FPS game: Dodge bullets

Client 2 sends a command after it knows what Client 1 does

Command 1
Command 2

61



Cheating in Lockstep Multiplayer

Countermeasures
= Send a commitment — hashed value of the command
= When received all commitments: Send commands
= Each peer checks the received commitments and commands
» Cheating players are kicked

Client 2 send a different command than the committed one = Kicked

Hash(Cmd1l) Cmdl
Hash(Cmd2) Cmd2’

62
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Client-Server Cheating

Assume client is hacked — Always
Everything is potentially garbage

Don’t use strings without sanitizing them first

= Or you might find users that call themselves “ OR EXISTS(SELECT * FROM
users WHERE name="jake' AND password LIKE '%w%'") AND "="

Client side
» Use knowledge of game data
» Predict wrongly

Server side
» Make incorrect inputs

63
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Client-Side Cheats

Use game data that should not be available or usable for the player

By packet sniffing, changing the game client, memory analysis
» Wall hacks: Change textures to allow players to be seen through walls
= Auto aim: Use exact positioning data to aim automatically

= Access hidden information: Other player’'s hands in card games, inventories,
units hidden by fog of war, ...

= 2 Only send data on a need-to-know basis

= - Can interfere with smooth gameplay (e.g. client has to preload meshes for
objects which will come into view soon, other players behind walls, ...)

Incorrect predictions
» Report data like position, ... incorrectly
= > Server must check reported data for validity

64
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Server-Side cheats

Send wrong requests to server
» E.g. MMORPG - Players can choose new skills to learn by clicking them
» Options are grayed out if unavailable
» Hacked client sends all RPCs anyway
= = Server needs to validate that client requests are valid

Attacking the server itself
» E.g. hack the database, ...

65



Cheat prevention

Check integrity of game files and executables
» Hashing, comparing hashes to reference

Monitor computer for cheating software
= World of Warcraft Warden

Monitor cheating forums

Analyze data
» Find invalid game states
» Get leads on possible exploits

Game replays, community actions
» Check replays by suspected players
= \/ote on cheating players

66



The Future — More Predictions

“At last thou hast come to fulfill thy destinyg,”™
the gypsy says. She smiles, as if 1n great relief.

. “5it before me now. and I shall pour the light of |
UVirtue into the shadows of thy future.”

Ultima VI, 1990

67



Game-Streaming

Run game on the server
= Client sends input events
= Server sends video stream

First commercial services

= OnLive L I Ve"‘~

= .. Went out of business in 2015
» PlayStation Now
= Started 2014

.:[%, PlayStation.Now

68



Game-Streaming Pro & Contra
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Game works like a split-screen game on the server
= Super easy development

Video compression can look ugly
= But internet connections get faster all the time

Latency is as bad or worse than basic Client/Server

Cheating prevention

69



Latency

Speed of light is ~300000 km/s

Circumference of the earth ~40000 km

At least one data roundtrip necessary
= > (0.1 seconds for far away servers
» Too slow

70
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Latency

Streaming Game providers try to place lots of server at different
places
* To minimize distance and therefore latency

Typically ends up at speeds that are ok for some persons
= And some genres

Not acceptable for VR
= Super low latency is critical for good VR

71
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Shinra

Research project by Square-Enix
Wants to use streaming to create new types of multiplayer games

Current multiplayer games are restricted by the amount of data that
can be transfered
» Doesn’t matter when just streaming audio/video data

Plus want to just use more hardware per game
» For more physics or other costly effects

Current state (August 2015)
= Beta in North America for users with Google Fiber connection
= https://www.youtube.com/watch?v=] Eep-XzxXo
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Client/Server Programming

Example: Unreal Engine 4
Architecture

Remote Procedure Calls
= VValidation

Replication
Prediction, Correction

Cheating strategies and preventions

UNREAL

ENGINE

73
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Unreal Networking

Authoritative Client/Server

Can be dedicated server
= No rendering

Basic methods on Actors
= RPCs
» Property Replication

Actors exist on both the clients and the server
= Ownership: Local player can be the owner of an actor
» Relevant for choosing which objects run remote code
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Remote Procedure Calls
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Called from the server, runs on the client:

UFUNCTION( Client );
void ClientRPCFunction();

Called from the client, runs on the server:

UFUNCTION( Server ),
void ServerRPCFunction();

Called from the server, runs on all clients:

UFUNCTION( NetMulticast );
void MulticastRPCFunction();
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Remote Procedure Calls

Reliability
= Make sure that the code is eventually run
» E.g. by resending and acknowledging

UFUNCTION( Client, Reliable);
void ClientRPCFunction();

Validation
» Need to implement a function bool SomeRPCFunction_Validate(...)
» Check if game state allows this function to be called

UFUNCTION( Server, WithValidation );
void SomeRPCFunction(int32 AddHealth );
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Property Replication

UPROPERTY( replicated )
float Health;

If change on server
» Replicate to client
= Overwrite current value

If change on client
= Nothing
» Clients need to use RPCs to make relevant state changes

77
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References, Priorities, Quantization

Sending pointer values over the network

= Internally serialize to an ID
= Send the ID
» On the receiving side, look up the correct pointer value

Priorities
» Set custom net update intervals
= NetPriority: Objects with higher priority get more share of the bandwidth
» Maximal distance to replicate
» Important for owner only, for all players,...?

Quantization
= FVector NetQuantize/FVector NetQuantizel0/FVector NetQuantize100
» Different sizes when sent over the network
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Required systems
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Preprocessor Magic

"Unreal Header Tool"

Parses all UProperty

Generates meta code/reflections

Allows properties to be serialized
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Common pitfalls

Forgetting to replicate properties, e.g. movement
» 2> Different behaviour, position on client and server
= = Running into invisible barriers, ...

Getting properties of the wrong object
» Each player is represented by different pawns
= Want to check against name - different names

80
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Harder pitfalls

Relying on ordering of replication
» The order in which properties are replicated is not guaranteed by default
» Always assume that the state of an object is not completely coherent
= |f coherency is needed, ensure it
= E.g. by using RPCs to synchronize data
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Summary

Multiplayer through the ages
= Local machine multiplayer
= 2-machine multiplayer
= LAN networking
* Internetworking
= Cloud gaming?

Architectures
= P2P Lockstep
» Client/Server (with client-side prediction)
= Cloud

Internet basics

Cheating and Cheat prevention
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