
© author(s) of these slides including research results from the KOM research network and TU Darmstadt; otherwise it is specified at the respective slide

18-Dec-15

Prof. Dr.-Ing. Ralf Steinmetz

KOM - Multimedia Communications Lab

Template all v.3.4

PPT-for-all___v.3.4_office2010___2012.09.10.pptx

Game Technology

Lecture 12 – 19.12.2015

Multiplayer Games

Dipl-Inf. Robert Konrad

Dr.-Ing. Florian Mehm

Super Mario Kart (1991)

KOM – Multimedia Communications Lab 2

First games – Local multiplayer

 AI not yet ready for use

 Simple to implement

 Lower hurdle for players who don’t know video games (= everyone in 1970 ;-)

Short multiplayer history

Pong (1972), Computer Space (1971)

KOM – Multimedia Communications Lab 3

Described by Ken Wassermann and Tim Stryker in BYTE, December

1980

https://www.youtube.com/watch?v=9RutllBwoiA

http://archive.org/stream/byte-magazine-1980-12/1980_12_BYTE_05-

12_Adventure

Flash Attack (1980)

https://www.youtube.com/watch?v=9RutllBwoiA
http://archive.org/stream/byte-magazine-1980-12/1980_12_BYTE_05-12_Adventure

KOM – Multimedia Communications Lab 4

Userport (8 bit parallel communication)

Parallel port multiplayer

Commodore PET (1977)

KOM – Multimedia Communications Lab 5

2 programs need to coordinate when the bus is used for reading and

writing

Very limited communication possible

Parallel port multiplayer

KOM – Multimedia Communications Lab 6

Atari ST, Up to 16 players connected via MIDI ports

MIDI Maze (1987)

KOM – Multimedia Communications Lab 7

Faceball 2000 (1991)

Supported 16 player multiplayer (only GB game)

Required 7 4-player adapters (requirement by Nintendo – developers

had developed a custom solution for the game)

MIDI Maze GameBoy Port

KOM – Multimedia Communications Lab 8

Peer to peer multiplayer

Keyboard commands sampled at tics (1/35 s) and sent to all players

Game proceeds when received inputs by all players

Negative acknowledgements: If tic numbers do not match up, resend

Doom (1993)

KOM – Multimedia Communications Lab 9

Client/Server with no prediction

Quake (1996)

KOM – Multimedia Communications Lab 10

Update to allow internet multiplayer for Quake

Client/Server with Client-Side prediction

QuakeWorld (1996)

KOM – Multimedia Communications Lab 11

Why the switch from Quake to

QuakeWorld?

10Base2 Ethernet

 Latency: Minimal

 Bandwidth: 10 Mbps

 Packet loss: Almost non-existent

 Jitter: Almost none

 Fury at the player who interrupted the

connection: endless

LAN gameplay (1990s) Metrics

“an elegant weapon for a
more civilized time”

KOM – Multimedia Communications Lab 12

Study by Bungie in 2007

Baseline for 99% of Xbox ownwers

 Latency: 200ms one-way (ping of 400)

 10% jitter (consistency of the connection – rate of packets arriving same as

sending)

 Bandwidth: 8KB/s up, 8 KB/s down

 Packet loss: Up to 5%

 Very different challenges

 LAN: Low latency, large bandwidth, reliable (except for people stumbling over

cables…)

 Internet: High latency, smaller bandwidth, jitter, unreliable

Internet

KOM – Multimedia Communications Lab 13

Number of players

Networking technology

Gameplay implications

 Social factors

 Network metrics

 Gameplay requirements

Multiplayer architectures

KOM – Multimedia Communications Lab 14

The Simpsons Arcade Game (1991)

KOM – Multimedia Communications Lab 15

Trivial implementation

No latencies

Uncompressed realtime 3D video chat

One computer, multiple players

KOM – Multimedia Communications Lab 16

Saturn Bomberman (1996)

KOM – Multimedia Communications Lab 17

Screen space restricted

Number of controllers restricted

Number of locally available players who understand Bomberman

severely restricted

Local multiplayer

KOM – Multimedia Communications Lab 18

KOM – Multimedia Communications Lab 19

Synchronizes game step by step

 Send command data (go forward, move unit,…)

 Receive commands by all other players

 Simulate game step on all computers

 Repeat

Peer-to-Peer Lockstep

KOM – Multimedia Communications Lab 20

struct MovementCommand {

unsigned int UnitID;

float targetLocation[2];

};

size_t s = sizeof(MovementCommand); //12 Bytes

Real-time strategy games about 1 command every 1.5 – 2s

1 command / 1.75 s

1/1.75 commands per second --> 6.86 Bytes per second per Player

With 8 players: 54.86 Bytes per second

Example structure

KOM – Multimedia Communications Lab 21

Player 1 and player 2 send a command each

Game continues when all commands are sent and received

Turns

Command 1

Command 2

ACK

ACK

KOM – Multimedia Communications Lab 22

Player 2 is slow Game runs slower

Turns

Command 1

Command 2

ACK

ACK

KOM – Multimedia Communications Lab 23

Take the ping and the capabilities of the slowest machine into

account – measure constantly and adapt

Adjustment of turn lengths

http://www.gamasutra.com/view/feature/3094/1500_archers_on_a_288_network_.php?print=1

KOM – Multimedia Communications Lab 24

Low data rate

 Just high level game commands

Very fragile

 Requires complete determinism

 Requires every client to reliably send data

 One client hangs -> the game hangs

Maximizes latency

 Game has to wait for every one

Players can‘t join a running game easily

 Would have to rerun all previous game commands

Pro & Contra

KOM – Multimedia Communications Lab 25

Desynchronization errors

Serialize game states

 Maybe already needed for replay, save games, …

 Exact, allows resetting the state, debugging

 Larger sizes for snapshots

Implement hashes for game states

 Containing everything relevant to the game

 Ideally can do this quickly

 Small memory footprint

Debugging

KOM – Multimedia Communications Lab 26

Manually

 Each object can implement functions for Serialization and Deserialization, write

and read relevant data

Save memory layout

 Simple, but can break easily

 References need to be fixed

Reflection system

 Not part of C++ natively

Finding which part of the state is corrupted

 During deserialization, compare the states

 Assert at the point where the states differ

Serializing and debugging

KOM – Multimedia Communications Lab 27

Make sure to separate between core and other parts

Core: Everything needed to calculate relevant game state

Advantages

 Can determine the game state easier

 Explicit which code needs to have network in mind

 Eleminate cross-talk

Cross-talk

 Imagine a random animation component

 float nextValue = rand(minValue, maxValue);

 Depends on frame rate

 Might or might take a random value away

Determinism

KOM – Multimedia Communications Lab 28

Randomness

 Save your seeds

 Implement your own rand()

 Done

Calculations

 Integer calculations - easy

 Floating point calculations – a little weird

 Different optimizations on different compilers

 There is usually a „strict IEEE 754“ option

 Different CPUs

 x86 calculates in 80bits, then rounds to 32/64 bit

 …

Determinism

KOM – Multimedia Communications Lab 29

Ideally

 Fast

 Captures all relevant information

 Few collisions (different game states with same hash)

Zobrist Hash

 Developed for chess programming

 Generate a random number for each piece on each field

 White pawn on A1: 8B8A 616B 8587 1AB6

 Black pawn on A1: 83AB C69D 2933 4FEC

 ...

 Encode a state as the XOR combination of all field states

 A1 XOR A2 XOR

Hashing

KOM – Multimedia Communications Lab 30

Still used in strategy games

 Even realtime strategy

Not used in action games

 Because the internetz

Game design tricks used to hide latency

 Play an animation/sound immediately

 Move units after all clients agreed

 But: The longer the own units take to react, the more apparent it becomes

Similar tricks used to hide AI calculations

Peer-to-Peer Lockstep Today

“More Work?” – Warcraft 3, 2002

KOM – Multimedia Communications Lab 31

Server controls everything

Clients are like terminals

Complete game runs only on the server

 Clients send game commands

 Server sends game state

Client/Server

KOM – Multimedia Communications Lab 32

struct {

vec3 Position;

vec3 Rotation;

AnimationID Animation;

float AnimationState;

}

For each player

Game State

KOM – Multimedia Communications Lab 33

Simulates the complete game

 Everything that‘s relevant for the game state

 Including physics

 Not including cosmetics like particle effects

Does not depend on clients

 Clients can hang

 Clients can drop in and out

 Does not result in problems for other clients

Server

KOM – Multimedia Communications Lab 34

Really dumb client

 Reads input, sends it to the server

 Does not actually run the game

 Just interpolates received game states

 Might run some simulations for effects work

 Menu animations

 Particle effects

 Physics which do not interfere with gameplay

 …

Client

KOM – Multimedia Communications Lab 35

Client/Server can feel very stop-and-go

Players see individual frames as they come in

Interpolate between states

Interpolation

KOM – Multimedia Communications Lab 36

Very robust

 Clients can hardly cause any problems

 Lags from one client do not propagate to other clients

 No cheating

Very laggy

 Everything lags

 Even basic movement lags

 The server simulates every player

 Size of game state has to be rather small

Pro & Contra

KOM – Multimedia Communications Lab 37

Outdated

Client/Server today

KOM – Multimedia Communications Lab 38

Mix of Client/Server and a little bit of Peer-to-Peer

Server is still the boss

 But clients predict the game state

Client/Server with Client-Side Prediction

KOM – Multimedia Communications Lab 39

Prediction

King’s Quest V - 1990

KOM – Multimedia Communications Lab 40

Just run everything on the client and the server

 But no client-client-communication

 Determinism helps

Most of the time, predictions should be correct

 At least for the player character himself

 Makes controls snappy

For other players pure prediction

 Often incorrect

Prediction

KOM – Multimedia Communications Lab 41

Failed Predictions

KOM – Multimedia Communications Lab 42

Use the corrected data

 Cause the server is the boss

Hide your mistakes

 Interpolate visuals to avoid jumps

 Or let stuff jump around when out of view

Failed Predictions

KOM – Multimedia Communications Lab 43

Clients receive only old data

Compare old received data and old predicted data

 When prediction was wrong

 Recalculate new current state based on received old state

 Then interpolate

Failed Predictions

KOM – Multimedia Communications Lab 44

Can cause unfair situations

 Visuals show that an enemy was hit but he really wasn‘t

No real solution possible

 Virtual life is not fair :-(

Failed Predictions

KOM – Multimedia Communications Lab 45

Excellent series of blog posts: „Introduction to Networked Physics“

by Glenn Fiedler

http://gafferongames.com/networked-physics/introduction-to-

networked-physics/

GDC Talk available to watch:

http://gafferongames.com/2015/04/12/networking-for-physics-

programmers-is-now-free-to-view-in-the-gdc-vault/

Also well suited to recap the architectures

Physics States

http://gafferongames.com/networked-physics/introduction-to-networked-physics/

KOM – Multimedia Communications Lab 46

Effects of lacking determinism

 Random number generation not synchronized

Lockstep, Determinism

KOM – Multimedia Communications Lab 47

Simulation with fixed determinism

Lockstep, Determinism

KOM – Multimedia Communications Lab 48

Client/Server

KOM – Multimedia Communications Lab 49

Client/Server

KOM – Multimedia Communications Lab 50

Client/Server with Interpolation

KOM – Multimedia Communications Lab 51

All IP based

Everything just works like the internet

Much more information

 Communication Networks lectures

 Multimedia Communications Lab (KOM)

Network Protocols

KOM – Multimedia Communications Lab 52

Internet Protocol

Packet based

 No direct connections

 Much like post packages

 Unreliable

IP

KOM – Multimedia Communications Lab 53

Transmission Control Protocol

Direct connections

Reliable streams of data

Super easy

TCP/IP

KOM – Multimedia Communications Lab 54

Builds on a package based protocol

Makes sure every package arrives

Makes sure all packages stay in the same order

TCP/IP

KOM – Multimedia Communications Lab 55

Reorders packages

Requests missing packages again

 One missing package can cause huge delays

TCP/IP

KOM – Multimedia Communications Lab 56

Unacceptable for many applications

Mostly not important for games

 Positions from 30ms ago are outdated anyway

 Gets new positions all the time anyway

Missed packages

KOM – Multimedia Communications Lab 57

User Datagram Protocol

Basically IP plus port numbers

Works with packages directly

UDP

KOM – Multimedia Communications Lab 58

Use packages directly for game state

Implement TCP like functionality for other stuff

 Highscore lists,…

UDP

KOM – Multimedia Communications Lab 59

Has additional difficulties

 Applications have to measure transfer rates

 Typical packet sizes (< 512 Bytes) are hopefully enough for one piece of game

state

UDP

KOM – Multimedia Communications Lab 60

Never trust the client.

Never put anything on the client.

The client is in the hands of the enemy.

Never ever ever forget this.

- Raph Koster, “The Laws of Online World Design”

Cheating

KOM – Multimedia Communications Lab 61

Cheating client holds back sending commands until it knows the

other’s commands

 RTS game: Dispatch units to counter enemy movements

 FPS game: Dodge bullets

Client 2 sends a command after it knows what Client 1 does

Cheating in Lockstep Multiplayer

Command 1

Command 2

ACK

ACK

KOM – Multimedia Communications Lab 62

Countermeasures

 Send a commitment – hashed value of the command

 When received all commitments: Send commands

 Each peer checks the received commitments and commands

 Cheating players are kicked

Client 2 send a different command than the committed one Kicked

Cheating in Lockstep Multiplayer

Hash(Cmd1)

ACK
Hash(Cmd2)

ACK Cmd1

Cmd2‘

KOM – Multimedia Communications Lab 63

Assume client is hacked – Always

Everything is potentially garbage

Don’t use strings without sanitizing them first

 Or you might find users that call themselves “' OR EXISTS(SELECT * FROM

users WHERE name='jake' AND password LIKE '%w%') AND ''=’”

Client side

 Use knowledge of game data

 Predict wrongly

Server side

 Make incorrect inputs

Client-Server Cheating

KOM – Multimedia Communications Lab 64

Use game data that should not be available or usable for the player

By packet sniffing, changing the game client, memory analysis

 Wall hacks: Change textures to allow players to be seen through walls

 Auto aim: Use exact positioning data to aim automatically

 Access hidden information: Other player’s hands in card games, inventories,

units hidden by fog of war, …

 Only send data on a need-to-know basis

 Can interfere with smooth gameplay (e.g. client has to preload meshes for

objects which will come into view soon, other players behind walls, …)

Incorrect predictions

 Report data like position, … incorrectly

 Server must check reported data for validity

Client-Side Cheats

KOM – Multimedia Communications Lab 65

Send wrong requests to server

 E.g. MMORPG – Players can choose new skills to learn by clicking them

 Options are grayed out if unavailable

 Hacked client sends all RPCs anyway

 Server needs to validate that client requests are valid

Attacking the server itself

 E.g. hack the database, …

Server-Side cheats

KOM – Multimedia Communications Lab 66

Check integrity of game files and executables

 Hashing, comparing hashes to reference

Monitor computer for cheating software

 World of Warcraft Warden

Monitor cheating forums

Analyze data

 Find invalid game states

 Get leads on possible exploits

Game replays, community actions

 Check replays by suspected players

 Vote on cheating players

Cheat prevention

KOM – Multimedia Communications Lab 67

The Future – More Predictions

Ultima VI, 1990

KOM – Multimedia Communications Lab 68

Run game on the server

 Client sends input events

 Server sends video stream

First commercial services

 OnLive

 ... Went out of business in 2015

 PlayStation Now

 Started 2014

Game-Streaming

KOM – Multimedia Communications Lab 69

Game works like a split-screen game on the server

 Super easy development

Video compression can look ugly

 But internet connections get faster all the time

Latency is as bad or worse than basic Client/Server

Cheating prevention

Game-Streaming Pro & Contra

KOM – Multimedia Communications Lab 70

Speed of light is ~300000 km/s

Circumference of the earth ~40000 km

At least one data roundtrip necessary

 > 0.1 seconds for far away servers

 Too slow

Latency

KOM – Multimedia Communications Lab 71

Streaming Game providers try to place lots of server at different

places

 To minimize distance and therefore latency

Typically ends up at speeds that are ok for some persons

 And some genres

Not acceptable for VR

 Super low latency is critical for good VR

Latency

KOM – Multimedia Communications Lab 72

Research project by Square-Enix

Wants to use streaming to create new types of multiplayer games

Current multiplayer games are restricted by the amount of data that

can be transfered

 Doesn’t matter when just streaming audio/video data

Plus want to just use more hardware per game

 For more physics or other costly effects

Current state (August 2015)

 Beta in North America for users with Google Fiber connection

 https://www.youtube.com/watch?v=j_Eep-XzxXo

Shinra

KOM – Multimedia Communications Lab 73

Example: Unreal Engine 4

Architecture

Remote Procedure Calls

 Validation

Replication

Prediction, Correction

Cheating strategies and preventions

Client/Server Programming

KOM – Multimedia Communications Lab 74

Authoritative Client/Server

Can be dedicated server

 No rendering

Basic methods on Actors

 RPCs

 Property Replication

Actors exist on both the clients and the server

 Ownership: Local player can be the owner of an actor

 Relevant for choosing which objects run remote code

Unreal Networking

KOM – Multimedia Communications Lab 75

Called from the server, runs on the client:

UFUNCTION(Client);

void ClientRPCFunction();

Called from the client, runs on the server:

UFUNCTION(Server);

void ServerRPCFunction();

Called from the server, runs on all clients:

UFUNCTION(NetMulticast);

void MulticastRPCFunction();

Remote Procedure Calls

KOM – Multimedia Communications Lab 76

Reliability

 Make sure that the code is eventually run

 E.g. by resending and acknowledging

UFUNCTION(Client, Reliable);

void ClientRPCFunction();

Validation

 Need to implement a function bool SomeRPCFunction_Validate(…)

 Check if game state allows this function to be called

UFUNCTION(Server, WithValidation);

void SomeRPCFunction(int32 AddHealth);

Remote Procedure Calls

KOM – Multimedia Communications Lab 77

UPROPERTY(replicated)

float Health;

If change on server

 Replicate to client

 Overwrite current value

If change on client

 Nothing

 Clients need to use RPCs to make relevant state changes

Property Replication

KOM – Multimedia Communications Lab 78

Sending pointer values over the network

 Internally serialize to an ID

 Send the ID

 On the receiving side, look up the correct pointer value

Priorities

 Set custom net update intervals

 NetPriority: Objects with higher priority get more share of the bandwidth

 Maximal distance to replicate

 Important for owner only, for all players,…?

Quantization

 FVector_NetQuantize/FVector_NetQuantize10/FVector_NetQuantize100

 Different sizes when sent over the network

References, Priorities, Quantization

KOM – Multimedia Communications Lab 79

Preprocessor Magic

"Unreal Header Tool"

Parses all UProperty

Generates meta code/reflections

Allows properties to be serialized

Required systems

KOM – Multimedia Communications Lab 80

Forgetting to replicate properties, e.g. movement

 Different behaviour, position on client and server

 Running into invisible barriers, …

Getting properties of the wrong object

 Each player is represented by different pawns

 Want to check against name different names

Common pitfalls

KOM – Multimedia Communications Lab 81

Relying on ordering of replication

 The order in which properties are replicated is not guaranteed by default

 Always assume that the state of an object is not completely coherent

 If coherency is needed, ensure it

 E.g. by using RPCs to synchronize data

Harder pitfalls

KOM – Multimedia Communications Lab 82

Multiplayer through the ages

 Local machine multiplayer

 2-machine multiplayer

 LAN networking

 Internetworking

 Cloud gaming?

Architectures

 P2P Lockstep

 Client/Server (with client-side prediction)

 Cloud

Internet basics

Cheating and Cheat prevention

Summary

KOM – Multimedia Communications Lab 83

Merry Christmas

