
© author(s) of these slides including research results from the KOM research network and TU Darmstadt; otherwise it is specified at the respective slide

18-Dec-15

Prof. Dr.-Ing. Ralf Steinmetz

KOM - Multimedia Communications Lab

Template all v.3.4

PPT-for-all___v.3.4_office2010___2012.09.10.pptx

Game Technology

Lecture 12 – 19.12.2015

Multiplayer Games

Dipl-Inf. Robert Konrad

Dr.-Ing. Florian Mehm

Super Mario Kart (1991)

KOM – Multimedia Communications Lab 2

First games – Local multiplayer

 AI not yet ready for use

 Simple to implement

 Lower hurdle for players who don’t know video games (= everyone in 1970 ;-)

Short multiplayer history

Pong (1972), Computer Space (1971)

KOM – Multimedia Communications Lab 3

Described by Ken Wassermann and Tim Stryker in BYTE, December

1980

https://www.youtube.com/watch?v=9RutllBwoiA

http://archive.org/stream/byte-magazine-1980-12/1980_12_BYTE_05-

12_Adventure

Flash Attack (1980)

https://www.youtube.com/watch?v=9RutllBwoiA
http://archive.org/stream/byte-magazine-1980-12/1980_12_BYTE_05-12_Adventure

KOM – Multimedia Communications Lab 4

Userport (8 bit parallel communication)

Parallel port multiplayer

Commodore PET (1977)

KOM – Multimedia Communications Lab 5

2 programs need to coordinate when the bus is used for reading and

writing

Very limited communication possible

Parallel port multiplayer

KOM – Multimedia Communications Lab 6

Atari ST, Up to 16 players connected via MIDI ports

MIDI Maze (1987)

KOM – Multimedia Communications Lab 7

Faceball 2000 (1991)

Supported 16 player multiplayer (only GB game)

Required 7 4-player adapters (requirement by Nintendo – developers

had developed a custom solution for the game)

MIDI Maze GameBoy Port

KOM – Multimedia Communications Lab 8

Peer to peer multiplayer

Keyboard commands sampled at tics (1/35 s) and sent to all players

Game proceeds when received inputs by all players

Negative acknowledgements: If tic numbers do not match up, resend

Doom (1993)

KOM – Multimedia Communications Lab 9

Client/Server with no prediction

Quake (1996)

KOM – Multimedia Communications Lab 10

Update to allow internet multiplayer for Quake

Client/Server with Client-Side prediction

QuakeWorld (1996)

KOM – Multimedia Communications Lab 11

Why the switch from Quake to

QuakeWorld?

10Base2 Ethernet

 Latency: Minimal

 Bandwidth: 10 Mbps

 Packet loss: Almost non-existent

 Jitter: Almost none

 Fury at the player who interrupted the

connection: endless

LAN gameplay (1990s) Metrics

“an elegant weapon for a
more civilized time”

KOM – Multimedia Communications Lab 12

Study by Bungie in 2007

Baseline for 99% of Xbox ownwers

 Latency: 200ms one-way (ping of 400)

 10% jitter (consistency of the connection – rate of packets arriving same as

sending)

 Bandwidth: 8KB/s up, 8 KB/s down

 Packet loss: Up to 5%

 Very different challenges

 LAN: Low latency, large bandwidth, reliable (except for people stumbling over

cables…)

 Internet: High latency, smaller bandwidth, jitter, unreliable

Internet

KOM – Multimedia Communications Lab 13

Number of players

Networking technology

Gameplay implications

 Social factors

 Network metrics

 Gameplay requirements

Multiplayer architectures

KOM – Multimedia Communications Lab 14

The Simpsons Arcade Game (1991)

KOM – Multimedia Communications Lab 15

Trivial implementation

No latencies

Uncompressed realtime 3D video chat

One computer, multiple players

KOM – Multimedia Communications Lab 16

Saturn Bomberman (1996)

KOM – Multimedia Communications Lab 17

Screen space restricted

Number of controllers restricted

Number of locally available players who understand Bomberman

severely restricted

Local multiplayer

KOM – Multimedia Communications Lab 18

KOM – Multimedia Communications Lab 19

Synchronizes game step by step

 Send command data (go forward, move unit,…)

 Receive commands by all other players

 Simulate game step on all computers

 Repeat

Peer-to-Peer Lockstep

KOM – Multimedia Communications Lab 20

struct MovementCommand {

unsigned int UnitID;

float targetLocation[2];

};

size_t s = sizeof(MovementCommand); //12 Bytes

Real-time strategy games about 1 command every 1.5 – 2s

1 command / 1.75 s

1/1.75 commands per second --> 6.86 Bytes per second per Player

With 8 players: 54.86 Bytes per second

Example structure

KOM – Multimedia Communications Lab 21

Player 1 and player 2 send a command each

Game continues when all commands are sent and received

Turns

Command 1

Command 2

ACK

ACK

KOM – Multimedia Communications Lab 22

Player 2 is slow  Game runs slower

Turns

Command 1

Command 2

ACK

ACK

KOM – Multimedia Communications Lab 23

Take the ping and the capabilities of the slowest machine into

account – measure constantly and adapt

Adjustment of turn lengths

http://www.gamasutra.com/view/feature/3094/1500_archers_on_a_288_network_.php?print=1

KOM – Multimedia Communications Lab 24

Low data rate

 Just high level game commands

Very fragile

 Requires complete determinism

 Requires every client to reliably send data

 One client hangs -> the game hangs

Maximizes latency

 Game has to wait for every one

Players can‘t join a running game easily

 Would have to rerun all previous game commands

Pro & Contra

KOM – Multimedia Communications Lab 25

Desynchronization errors

Serialize game states

 Maybe already needed for replay, save games, …

 Exact, allows resetting the state, debugging

 Larger sizes for snapshots

Implement hashes for game states

 Containing everything relevant to the game

 Ideally can do this quickly

 Small memory footprint

Debugging

KOM – Multimedia Communications Lab 26

Manually

 Each object can implement functions for Serialization and Deserialization, write

and read relevant data

Save memory layout

 Simple, but can break easily

 References need to be fixed

Reflection system

 Not part of C++ natively

Finding which part of the state is corrupted

 During deserialization, compare the states

 Assert at the point where the states differ

Serializing and debugging

KOM – Multimedia Communications Lab 27

Make sure to separate between core and other parts

Core: Everything needed to calculate relevant game state

Advantages

 Can determine the game state easier

 Explicit which code needs to have network in mind

 Eleminate cross-talk

Cross-talk

 Imagine a random animation component

 float nextValue = rand(minValue, maxValue);

 Depends on frame rate

  Might or might take a random value away

Determinism

KOM – Multimedia Communications Lab 28

Randomness

 Save your seeds

 Implement your own rand()

 Done

Calculations

 Integer calculations - easy

 Floating point calculations – a little weird

 Different optimizations on different compilers

 There is usually a „strict IEEE 754“ option

 Different CPUs

 x86 calculates in 80bits, then rounds to 32/64 bit

 …

Determinism

KOM – Multimedia Communications Lab 29

Ideally

 Fast

 Captures all relevant information

 Few collisions (different game states with same hash)

Zobrist Hash

 Developed for chess programming

 Generate a random number for each piece on each field

 White pawn on A1: 8B8A 616B 8587 1AB6

 Black pawn on A1: 83AB C69D 2933 4FEC

 ...

 Encode a state as the XOR combination of all field states

 A1 XOR A2 XOR

Hashing

KOM – Multimedia Communications Lab 30

Still used in strategy games

 Even realtime strategy

Not used in action games

 Because the internetz

Game design tricks used to hide latency

 Play an animation/sound immediately

 Move units after all clients agreed

 But: The longer the own units take to react, the more apparent it becomes

Similar tricks used to hide AI calculations

Peer-to-Peer Lockstep Today

“More Work?” – Warcraft 3, 2002

KOM – Multimedia Communications Lab 31

Server controls everything

Clients are like terminals

Complete game runs only on the server

 Clients send game commands

 Server sends game state

Client/Server

KOM – Multimedia Communications Lab 32

struct {

vec3 Position;

vec3 Rotation;

AnimationID Animation;

float AnimationState;

}

For each player

Game State

KOM – Multimedia Communications Lab 33

Simulates the complete game

 Everything that‘s relevant for the game state

 Including physics

 Not including cosmetics like particle effects

Does not depend on clients

 Clients can hang

 Clients can drop in and out

 Does not result in problems for other clients

Server

KOM – Multimedia Communications Lab 34

Really dumb client

 Reads input, sends it to the server

 Does not actually run the game

 Just interpolates received game states

 Might run some simulations for effects work

 Menu animations

 Particle effects

 Physics which do not interfere with gameplay

 …

Client

KOM – Multimedia Communications Lab 35

Client/Server can feel very stop-and-go

Players see individual frames as they come in

Interpolate between states

Interpolation

KOM – Multimedia Communications Lab 36

Very robust

 Clients can hardly cause any problems

 Lags from one client do not propagate to other clients

 No cheating

Very laggy

 Everything lags

 Even basic movement lags

 The server simulates every player

 Size of game state has to be rather small

Pro & Contra

KOM – Multimedia Communications Lab 37

Outdated

Client/Server today

KOM – Multimedia Communications Lab 38

Mix of Client/Server and a little bit of Peer-to-Peer

Server is still the boss

 But clients predict the game state

Client/Server with Client-Side Prediction

KOM – Multimedia Communications Lab 39

Prediction

King’s Quest V - 1990

KOM – Multimedia Communications Lab 40

Just run everything on the client and the server

 But no client-client-communication

 Determinism helps

Most of the time, predictions should be correct

 At least for the player character himself

 Makes controls snappy

For other players pure prediction

 Often incorrect

Prediction

KOM – Multimedia Communications Lab 41

Failed Predictions

KOM – Multimedia Communications Lab 42

Use the corrected data

 Cause the server is the boss

Hide your mistakes

 Interpolate visuals to avoid jumps

 Or let stuff jump around when out of view

Failed Predictions

KOM – Multimedia Communications Lab 43

Clients receive only old data

Compare old received data and old predicted data

 When prediction was wrong

 Recalculate new current state based on received old state

 Then interpolate

Failed Predictions

KOM – Multimedia Communications Lab 44

Can cause unfair situations

 Visuals show that an enemy was hit but he really wasn‘t

No real solution possible

 Virtual life is not fair :-(

Failed Predictions

KOM – Multimedia Communications Lab 45

Excellent series of blog posts: „Introduction to Networked Physics“

by Glenn Fiedler

http://gafferongames.com/networked-physics/introduction-to-

networked-physics/

GDC Talk available to watch:

http://gafferongames.com/2015/04/12/networking-for-physics-

programmers-is-now-free-to-view-in-the-gdc-vault/

Also well suited to recap the architectures

Physics States

http://gafferongames.com/networked-physics/introduction-to-networked-physics/

KOM – Multimedia Communications Lab 46

Effects of lacking determinism

 Random number generation not synchronized

Lockstep, Determinism

KOM – Multimedia Communications Lab 47

Simulation with fixed determinism

Lockstep, Determinism

KOM – Multimedia Communications Lab 48

Client/Server

KOM – Multimedia Communications Lab 49

Client/Server

KOM – Multimedia Communications Lab 50

Client/Server with Interpolation

KOM – Multimedia Communications Lab 51

All IP based

Everything just works like the internet

Much more information

 Communication Networks lectures

 Multimedia Communications Lab (KOM)

Network Protocols

KOM – Multimedia Communications Lab 52

Internet Protocol

Packet based

 No direct connections

 Much like post packages

 Unreliable

IP

KOM – Multimedia Communications Lab 53

Transmission Control Protocol

Direct connections

Reliable streams of data

Super easy

TCP/IP

KOM – Multimedia Communications Lab 54

Builds on a package based protocol

Makes sure every package arrives

Makes sure all packages stay in the same order

TCP/IP

KOM – Multimedia Communications Lab 55

Reorders packages

Requests missing packages again

 One missing package can cause huge delays

TCP/IP

KOM – Multimedia Communications Lab 56

Unacceptable for many applications

Mostly not important for games

 Positions from 30ms ago are outdated anyway

 Gets new positions all the time anyway

Missed packages

KOM – Multimedia Communications Lab 57

User Datagram Protocol

Basically IP plus port numbers

Works with packages directly

UDP

KOM – Multimedia Communications Lab 58

Use packages directly for game state

Implement TCP like functionality for other stuff

 Highscore lists,…

UDP

KOM – Multimedia Communications Lab 59

Has additional difficulties

 Applications have to measure transfer rates

 Typical packet sizes (< 512 Bytes) are hopefully enough for one piece of game

state

UDP

KOM – Multimedia Communications Lab 60

Never trust the client.

Never put anything on the client.

The client is in the hands of the enemy.

Never ever ever forget this.

- Raph Koster, “The Laws of Online World Design”

Cheating

KOM – Multimedia Communications Lab 61

Cheating client holds back sending commands until it knows the

other’s commands

 RTS game: Dispatch units to counter enemy movements

 FPS game: Dodge bullets

Client 2 sends a command after it knows what Client 1 does

Cheating in Lockstep Multiplayer

Command 1

Command 2

ACK

ACK

KOM – Multimedia Communications Lab 62

Countermeasures

 Send a commitment – hashed value of the command

 When received all commitments: Send commands

 Each peer checks the received commitments and commands

 Cheating players are kicked

Client 2 send a different command than the committed one  Kicked

Cheating in Lockstep Multiplayer

Hash(Cmd1)

ACK
Hash(Cmd2)

ACK Cmd1

Cmd2‘

KOM – Multimedia Communications Lab 63

Assume client is hacked – Always

Everything is potentially garbage

Don’t use strings without sanitizing them first

 Or you might find users that call themselves “' OR EXISTS(SELECT * FROM

users WHERE name='jake' AND password LIKE '%w%') AND ''=’”

Client side

 Use knowledge of game data

 Predict wrongly

Server side

 Make incorrect inputs

Client-Server Cheating

KOM – Multimedia Communications Lab 64

Use game data that should not be available or usable for the player

By packet sniffing, changing the game client, memory analysis

 Wall hacks: Change textures to allow players to be seen through walls

 Auto aim: Use exact positioning data to aim automatically

 Access hidden information: Other player’s hands in card games, inventories,

units hidden by fog of war, …

  Only send data on a need-to-know basis

  Can interfere with smooth gameplay (e.g. client has to preload meshes for

objects which will come into view soon, other players behind walls, …)

Incorrect predictions

 Report data like position, … incorrectly

  Server must check reported data for validity

Client-Side Cheats

KOM – Multimedia Communications Lab 65

Send wrong requests to server

 E.g. MMORPG – Players can choose new skills to learn by clicking them

 Options are grayed out if unavailable

 Hacked client sends all RPCs anyway

  Server needs to validate that client requests are valid

Attacking the server itself

 E.g. hack the database, …

Server-Side cheats

KOM – Multimedia Communications Lab 66

Check integrity of game files and executables

 Hashing, comparing hashes to reference

Monitor computer for cheating software

 World of Warcraft Warden

Monitor cheating forums

Analyze data

 Find invalid game states

 Get leads on possible exploits

Game replays, community actions

 Check replays by suspected players

 Vote on cheating players

Cheat prevention

KOM – Multimedia Communications Lab 67

The Future – More Predictions

Ultima VI, 1990

KOM – Multimedia Communications Lab 68

Run game on the server

 Client sends input events

 Server sends video stream

First commercial services

 OnLive

 ... Went out of business in 2015

 PlayStation Now

 Started 2014

Game-Streaming

KOM – Multimedia Communications Lab 69

Game works like a split-screen game on the server

 Super easy development

Video compression can look ugly

 But internet connections get faster all the time

Latency is as bad or worse than basic Client/Server

Cheating prevention

Game-Streaming Pro & Contra

KOM – Multimedia Communications Lab 70

Speed of light is ~300000 km/s

Circumference of the earth ~40000 km

At least one data roundtrip necessary

 > 0.1 seconds for far away servers

 Too slow

Latency

KOM – Multimedia Communications Lab 71

Streaming Game providers try to place lots of server at different

places

 To minimize distance and therefore latency

Typically ends up at speeds that are ok for some persons

 And some genres

Not acceptable for VR

 Super low latency is critical for good VR

Latency

KOM – Multimedia Communications Lab 72

Research project by Square-Enix

Wants to use streaming to create new types of multiplayer games

Current multiplayer games are restricted by the amount of data that

can be transfered

 Doesn’t matter when just streaming audio/video data

Plus want to just use more hardware per game

 For more physics or other costly effects

Current state (August 2015)

 Beta in North America for users with Google Fiber connection

 https://www.youtube.com/watch?v=j_Eep-XzxXo

Shinra

KOM – Multimedia Communications Lab 73

Example: Unreal Engine 4

Architecture

Remote Procedure Calls

 Validation

Replication

Prediction, Correction

Cheating strategies and preventions

Client/Server Programming

KOM – Multimedia Communications Lab 74

Authoritative Client/Server

Can be dedicated server

 No rendering

Basic methods on Actors

 RPCs

 Property Replication

Actors exist on both the clients and the server

 Ownership: Local player can be the owner of an actor

 Relevant for choosing which objects run remote code

Unreal Networking

KOM – Multimedia Communications Lab 75

Called from the server, runs on the client:

UFUNCTION(Client);

void ClientRPCFunction();

Called from the client, runs on the server:

UFUNCTION(Server);

void ServerRPCFunction();

Called from the server, runs on all clients:

UFUNCTION(NetMulticast);

void MulticastRPCFunction();

Remote Procedure Calls

KOM – Multimedia Communications Lab 76

Reliability

 Make sure that the code is eventually run

 E.g. by resending and acknowledging

UFUNCTION(Client, Reliable);

void ClientRPCFunction();

Validation

 Need to implement a function bool SomeRPCFunction_Validate(…)

 Check if game state allows this function to be called

UFUNCTION(Server, WithValidation);

void SomeRPCFunction(int32 AddHealth);

Remote Procedure Calls

KOM – Multimedia Communications Lab 77

UPROPERTY(replicated)

float Health;

If change on server

 Replicate to client

 Overwrite current value

If change on client

 Nothing

 Clients need to use RPCs to make relevant state changes

Property Replication

KOM – Multimedia Communications Lab 78

Sending pointer values over the network

 Internally serialize to an ID

 Send the ID

 On the receiving side, look up the correct pointer value

Priorities

 Set custom net update intervals

 NetPriority: Objects with higher priority get more share of the bandwidth

 Maximal distance to replicate

 Important for owner only, for all players,…?

Quantization

 FVector_NetQuantize/FVector_NetQuantize10/FVector_NetQuantize100

 Different sizes when sent over the network

References, Priorities, Quantization

KOM – Multimedia Communications Lab 79

Preprocessor Magic

"Unreal Header Tool"

Parses all UProperty

Generates meta code/reflections

Allows properties to be serialized

Required systems

KOM – Multimedia Communications Lab 80

Forgetting to replicate properties, e.g. movement

 Different behaviour, position on client and server

  Running into invisible barriers, …

Getting properties of the wrong object

 Each player is represented by different pawns

 Want to check against name  different names

Common pitfalls

KOM – Multimedia Communications Lab 81

Relying on ordering of replication

 The order in which properties are replicated is not guaranteed by default

 Always assume that the state of an object is not completely coherent

 If coherency is needed, ensure it

 E.g. by using RPCs to synchronize data

Harder pitfalls

KOM – Multimedia Communications Lab 82

Multiplayer through the ages

 Local machine multiplayer

 2-machine multiplayer

 LAN networking

 Internetworking

 Cloud gaming?

Architectures

 P2P Lockstep

 Client/Server (with client-side prediction)

 Cloud

Internet basics

Cheating and Cheat prevention

Summary

KOM – Multimedia Communications Lab 83

Merry Christmas 

