
© author(s) of these slides including research results from the KOM research network and TU Darmstadt; otherwise it is specified at the respective slide

24-Dec-15

Prof. Dr.-Ing. Ralf Steinmetz

KOM - Multimedia Communications Lab

Template all v.3.4

PPT-for-all___v.3.4_office2010___2012.09.10.pptx

Game Technology

Lecture 10 – 19.12.2014

Procedural Content Generation

Dr.-Ing. Florian Mehm

Dipl-Inf. Robert Konrad

KOM – Multimedia Communications Lab 2

Example: No Man‘s Sky

KOM – Multimedia Communications Lab 3

Elite

 1984

 8 galaxies with 256 planets each

 Generated galaxies, planets
including names and properties

 BBC Micro: max. 128 KB Memory,
Elite was 52 KB of disk space

Minecraft

 Official Release 2011

 Generates terrain including
placement of settlements, resources,
... Procedurally

 Sold for 2.5 billion USD to Microsoft
in 2014

History

KOM – Multimedia Communications Lab 4

Rogue & Roguelikes

 Original released in 1980

 Generated a new dungeon each time

the player went to a new level

Algorithm for constructing the

levels

 http://kuoi.asui.uidaho.edu/~kamikaz

e/GameDesign/art07_rogue_dungeo

n.php

History

KOM – Multimedia Communications Lab 5

1. Divide the map into a grid (Rogue uses 3x3, but any size will work).

2. Give each grid a flag indicating if it's "connected" or not, and an array of
which grid numbers it's connected to.

3. Pick a random room to start with, and mark it "connected".

4. While there are unconnected neighbor rooms, connect to one of them, make
that the current room, mark it "connected", and repeat.

5. While there are unconnected rooms, try to connect them to a random
connected neighbor (if a room has no connected neighbors yet, just keep
cycling, you'll fill out to it eventually).

6. All rooms are now connected at least once.

7. Make 0 or more random connections to taste; I find rnd(grid_width) random
connections looks good.

8. Draw the rooms onto the map, and draw a corridor from the center of each
room to the center of each connected room, changing wall blocks into
corridors. If your rooms fill most or all of the space of the grid, your corridors
will very short - just holes in the wall.

9. Scan the map for corridor squares with 2 bordering walls, 1-2 bordering
rooms, and 0-1 bordering corridor, and change those to doors.

10. Place your stairs up in the first room you chose, and your stairs down in the
last room chosen in step 5. This will almost always be a LONG way away.

History - Rogue

KOM – Multimedia Communications Lab 6

Structure

 Many PCG algorithms can create

instances of classes of objects

 One type of house, tree, clothing, ...

 Recognizable structure in each

instance

 Structured way of deriving an

instance

Randomness

 Not a defining characteristic of PCG

 But often a central component

 Has the advantages of fooling the

eye, adding replayability

Principles

KOM – Multimedia Communications Lab 7

Online versus offline

 Online: Every time a new result

 Offline: Can be evaluated by an artist/designer

Necessary versus optional

 Necessary: The game would not work without PCG

 Optional: Background objects, ambient sounds, …

Degree and dimensions of control

 How much control is needed?

 For whom? Game designer, artist, end user?

Classification of Generators

KOM – Multimedia Communications Lab 8

Generic versus adaptive

 Generic: One size fits all

 Adaptive: React to players, build better challenges, adjust for play preferences

Stochastic versus deterministic

 Stochastic: Variation, Replayability

 Deterministic: Can be checked, repeated, the same for each player

 „Arse“ galaxy in Elite

Constructive versus Generate-and-test

 Constructive: Carry out PCG once

 Generate-and-test: Carry out PCG repeatedly

Automatic generation versus mixed authorship

 Mixed authorship: Designer changes something – PCG algorithm refines it - …

Classification of Generators

KOM – Multimedia Communications Lab 9

Teleological vs. Ontogenetic

KOM – Multimedia Communications Lab 10

Teleological (telos – goal, end)

 Creates an accurate model of the result

 PCG is the simulation of realistic processes

 Example: A landscape is formed by simulating the process of erosion

Ontogenetic (ontos – being, geneia – mode of production)

 Observe the properties of the end result

 Re-create the result without following the “natural” way to derive it

 Example: Forming a landscape using a noise function

Teleological vs. Ontogenetic

KOM – Multimedia Communications Lab 11

Easy to mix up

Etymology is not a good fit

Bottom up and top down are better suited

 Bottom up: Simulating the parts of the process, result is the natural conclusion

 Top down: Re-creating the end result with whatever (unrealistic) means

Bottom up vs. Top down

KOM – Multimedia Communications Lab 12

Random Number Generators

 Not handled here

Regular Languages, Grammars, Automata

Noise functions

Graph algorithms

Genetic algorithms, heuristics

Basic Tools

KOM – Multimedia Communications Lab 13

Generate

 Texture

 Normal Map

 Specular Map

 ...

Can be used in different systems

 Textures for objects

 Height maps

 Controlling flow or emission of particles

Texture Generation

https://www.youtube.com/watch?v=UZGoht2vkzU

https://www.youtube.com/watch?v=UZGoht2vkzU

KOM – Multimedia Communications Lab 14

Basic Generators & Image inputs

 Provide basic shapes and patterns

 Can insert randomness into the process

 Also image inputs to use in further steps

Filters

 Change the look of the input texture

 Enhance, blur, filter, ...

 Carry out mathematical operations

Combinations

 Combine different textures

Texture Generation

Combination

Generator

Filter

KOM – Multimedia Communications Lab 15

Combine different algorithms

Basic Generators have only texture output(s)

Filters and Combiners have

 One or more texture inputs

 One or more texture outputs

Texture Generation Node Networks

Generator Filter

Combination

Generator

Result

KOM – Multimedia Communications Lab 16

Example of networks - Metal

Noise
Motion

Blur

Overlay

Gradient

Result

KOM – Multimedia Communications Lab 17

Random

 All colors

 Grayscale

Patterns

 Grids

 Dots/Spheres

 Jittered patterns

 Voronoi Diagram

Random Noise

 Perlin Noise

Basic Generators Generator

KOM – Multimedia Communications Lab 18

Random

 All colors

 Grayscale

Patterns

 Grids

 Dots/Spheres

 Jittered patterns

 Voronoi Diagram

Random Noise

 Perlin Noise

Basic Generators Generator

KOM – Multimedia Communications Lab 19

Random

 All colors

 Grayscale

Patterns

 Grids

 Dots/Spheres

 Jittered patterns

 Voronoi Diagram

Random Noise

 Perlin Noise

Basic Generators Generator

KOM – Multimedia Communications Lab 20

Random

 All colors

 Grayscale

Patterns

 Grids

 Dots/Spheres

 Jittered patterns

 Voronoi Diagram

Random Noise

 Perlin Noise

Basic Generators Generator

KOM – Multimedia Communications Lab 21

Random

 All colors

 Grayscale

Patterns

 Grids

 Dots/Spheres

 Jittered patterns

 Voronoi Diagram

Random Noise

 Perlin Noise

Image Source: http://www.tri-nitro.com/project_mt_1_key_features.php

Basic Generators Generator

KOM – Multimedia Communications Lab 22

Random

 All colors

 Grayscale

Patterns

 Grids

 Dots/Spheres

 Jittered patterns

 Voronoi Diagram

Random Noise

 Perlin Noise

Basic Generators Generator

KOM – Multimedia Communications Lab 23

Random

 All colors

 Grayscale

Patterns

 Grids

 Dots/Spheres

 Jittered patterns

 Voronoi Diagram

Random Noise

 Perlin Noise

Basic Generators Generator

KOM – Multimedia Communications Lab 24

Each pixel of the resulting image

is based on one or more pixels

of the input image

Remember bilinear filtering for

texture lookups

 We looked up the values of 2x2

pixels to get a value for the final pixel

Filter kernel

 Specifies the pixels we need to

sample and the weights we sample

them with

Filters - Basics Filter

KOM – Multimedia Communications Lab 25

Move a box over the image

 New pixel = Sum of original pixels * weights

 Iterate over the image and calculate new pixels

Minimal Kernel size: 3x3

 Size must be odd numbers (central pixel)

In the following slides

 Divide by the sum of the values of the kernel Normalization

 Alternatively, floating point numbers could be used

 Special handling for 0 or negative sums

How to handle edges?

 Similar to texture lookup

 Extend the image, fill with constant color, …

Image source for next slides: http://tech-algorithm.com/articles/boxfiltering/

Box filter Filter

KOM – Multimedia Communications Lab 26

Unfiltered image

Smoothing

Box filter results

0 0 0
0 1 0
0 0 0

1 1 1
1 2 1
1 1 1

Filter

KOM – Multimedia Communications Lab 27

Sharpening

Raised

Box filter results

−1 −1 −1
−1 9 −1
−1 −1 −1

0 0 −2
0 2 0
1 0 0

Filter

KOM – Multimedia Communications Lab 28

Motion Blur

Edge Detection

Box filter results

0 0 1
0 0 0
1 0 0

−1 −1 −1
−1 8 −1
−1 −1 −1

Filter

KOM – Multimedia Communications Lab 29

Sum = (-1 * 8) + 9 = 1 Sum = (-1 * 8) + 8 = 0

Normalization

−1 −1 −1
−1 9 −1
−1 −1 −1

−1 −1 −1
−1 8 −1
−1 −1 −1

Filter

KOM – Multimedia Communications Lab 30

Sum = (1 * 8) + 2 = 10

Normalization

1 1 1
1 2 1
1 1 1

1

10

1 1 1
1 2 1
1 1 1

Filter

KOM – Multimedia Communications Lab 31

In one dimension

 σ is the standard deviation

 μ is not in the formula μ = 0

Calculation of the kernel

 In theory, G(x) would never be 0

 But in practice, all values further away
from 0 than ~3σ will be almost 0

In two dimensions

 Product of two Gaussian distributions

 Can be separated into a vertical and a
horizontal pass (faster)

Carrying out a box blur several
times can approximate a
Gaussian blur

Gaussian Blur

𝐺 𝑥 =
1

2𝜋𝜎2
𝑒
−
𝑥2

2𝜎2

𝐺 𝑥, 𝑦 =
1

2𝜋𝜎2 𝑒
−
𝑥2+𝑦2

2𝜎2

Filter

KOM – Multimedia Communications Lab 32

Gaussian Blur – Example Kernel

0.00000067 0.00002292 0.00019117 0.00038771 0.00019117 0.00002292 0.00000067

0.00002292 0.00078634 0.00655965 0.01330373 0.00655965 0.00078633 0.00002292

0.00019117 0.00655965 0.05472157 0.11098164 0.05472157 0.00655965 0.00019117

0.00038771 0.01330373 0.11098164 0.22508352 0.11098164 0.01330373 0.00038771

0.00019117 0.00655965 0.05472157 0.11098164 0.05472157 0.00655965 0.00019117

0.00002292 0.00078633 0.00655965 0.01330373 0.00655965 0.00078633 0.00002292

0.00000067 0.00002292 0.00019117 0.00038771 0.00019117 0.00002292 0.00000067

Filter

KOM – Multimedia Communications Lab 33

Gaussian Blur works in all directions simultaneously

Motion blur simulates the way a picture would be blurred on a

camera‘s sensor

Simple way to approximate it

 Use Gaussian Blur only in one direction

 If the blur should be rotated: Rotate the image, blur horizontally/vertically, rotate

back

Motion Blur Filter

KOM – Multimedia Communications Lab 34

What we are actually doing is a convolution

(Fast) Fourier Transform

 In the regular image space, the convolution is a sum of products

 In the Fourier domain, it becomes a product

 Can be faster for filters with large kernels

Filters - Convolution Filter

KOM – Multimedia Communications Lab 35

Remember the lecture on Alpha Blending Combination of source and
destination pixels

Modes
 Normal blend mode

 Dissolve

 Multiply

 Screen

 Overlay

 Hard Light

 Soft Light

 Dodge and burn

 Divide

 Addition

 Subtract

 Difference

 Darken Only

 Lighten Only

Examples: http://docs.gimp.org/en/gimp-concepts-layer-modes.html

Combinations Combination

KOM – Multimedia Communications Lab 36

Base image light Top image become lighter

Base image dark Top image becomes darker

a is the base image color, b the top image color

Example: Overlay blend mode

𝑓 𝑎, 𝑏 = ቊ
2𝑎𝑏 𝑖𝑓 𝑎 < 0.5

1 − 2(1 − 𝑎)(1 − 𝑏) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Combination

KOM – Multimedia Communications Lab 37

Level of detail of controls depends on target audience

E.g. artists on the game developer‘s team vs. Novice users

 How many parameters to expose?

 How many presets to provide?

 How comfortable is the configuration process?

 Provide visual editors

 Generate examples of the generated set

Control of PCG algorithms

KOM – Multimedia Communications Lab 38

Visual Editors – Example: Substance Designer

http://www.allegorithmic.com/products/substance-designer
https://www.youtube.com/watch?v=XVk2inSEpvI#t=38

http://www.allegorithmic.com/products/substance-designer
https://www.youtube.com/watch?v=XVk2inSEpvI#t=38

KOM – Multimedia Communications Lab 39

Take a set of points C1 to Cn, „sites“

Every point Ci defines a cell such that for each point P in the cell, no

other point in C lies closer to P than Ci

Regular points lead to regular patterns

Random points lead to irregular patterns

 Reptile skin

 Parcels of land

 ...

(Dual to Delaunay Triangulation)

Voronoi Diagram

KOM – Multimedia Communications Lab 40

Voronoi Diagram – Texture examples

Cobblestone Dry dirt

Giraffe skin Blood cells

KOM – Multimedia Communications Lab 41

Sweep line algorithm

 We keep track of a sweep line

 Everything on one side of the sweep line cannot be changed by the other

side

Beach line

 If we used only a sweep line, we could not be sure of the sweep line being

„safe“

Fortune‘s Algorithm

KOM – Multimedia Communications Lab 42

For a line and a point, the Voronoi diagram is a parabola

 Every point inside and on the parabola is closer to the site than to the line

Beach Line

KOM – Multimedia Communications Lab 43

Several parabolas define a region in which all points are closer to the

defining points than to the line

We can compute the Voronoi Diagram for the region above the

Beach line safely

Beach Line

KOM – Multimedia Communications Lab 44

Passing every new site creates a new parabola

The connecting points trace the edges of the Voronoi diagram as the

sweep line moves down

Point Events

KOM – Multimedia Communications Lab 45

Parabolas shrink

When a parabola disappears, a vertex of the diagram is found

This point is the center of a circle that is equidistant to the three sites

defining the parabola and the line

Circle events

KOM – Multimedia Communications Lab 46

Javascript implementation at http://www.raymondhill.net/voronoi/rhill-

voronoi.html

Examining Fortune’s algorithm

KOM – Multimedia Communications Lab 47

Build an “english countryside” look

Using Voronoi diagram as base

http://www.big-robot.com/2012/07/02/procedural-british-countryside-

generation/

Voronoi Example 1 – Sir, you are being hunted

http://www.big-robot.com/2012/07/02/procedural-british-countryside-generation/

KOM – Multimedia Communications Lab 48

Voronoi Example 1 – Sir, you are being hunted

KOM – Multimedia Communications Lab 49

http://www-cs-students.stanford.edu/~amitp/game-

programming/polygon-map-generation/demo.html

Voronoi Example 2 – Mapgen, Amit Patel

KOM – Multimedia Communications Lab 50

Random pixels

 No continuity

 If we interpreted it as a 2-

dimensional function (heightmap), it

would not work

Semi-Random Noise

 Cloud-like look

 Continuous

 Works well as a heightmap

Simplex Noise

KOM – Multimedia Communications Lab 51

Perlin Noise

 Developed by Ken Perlin

 Inspired while working on „Tron“ in 1982

 Won an Oscar in 1997

 Omnipresent noise generation function

Simplex Noise

 Suggested by Perlin in 2001 as a succesor to the previous noise function

 Better properties

 Scales better to higher dimensions

Perlin Noise, Simplex Noise

KOM – Multimedia Communications Lab 52

Gradient-based noise

 Determine for each integer value

 Function value 0

 Pseudo-random gradient

Perlin Noise

KOM – Multimedia Communications Lab 53

For a given point x (2D), the result is computed by blending

 The value of the previous gradient extrapolated to point x

 The value of the next gradient extrapolated to point x

Perlin Noise

KOM – Multimedia Communications Lab 54

Blending function

 Originally f(t) = 3t^2 – 2t^3

 Later f(t) = 6t^5 – 15t^4 + 10t^3

Purpose

 This way, the noise is also

continuous at the integer positions

Perlin Noise

KOM – Multimedia Communications Lab 55

For x, y, the value is interpolated between the closest integer points

such that i < x < i+1, j < y < j+1

Find the unweighted contributions by using the dot product

Perlin Noise (2D)

KOM – Multimedia Communications Lab 56

Can be seen better in 1D

Gradient is the slope of the function

Vector towards the evaluated point is the x-Value

In this case, the dot product becomes slope * x

Perlin Noise – Dot product

KOM – Multimedia Communications Lab 57

Choose 8-16 gradients from the unit circle

 Generate two random numbers (x and y)

 Normalize the vector

To make the process repeatable

 Save an array (e.g. n = 256 values) that contains a permutation of the first n

integers perm[]

Save the gradients in an array grad[][]

 Look up using int i00 = perm[(X + perm[Y]) % sizePerm] % numGradients

Gradients, Computation

KOM – Multimedia Communications Lab 58

Use the dot product to calculate the contribution of a gradient to the
sample

 Gradients are defined at the grid points

 Use vectors from grid points pointing to (x, y)

Interpolate in x-direction (2 rows)

Interpolate in y-direction

Gradients, Computation

KOM – Multimedia Communications Lab 59

Normalize the noise

 Divide x by width and y by height

Frequency

 Noise = perlin(xnormalized * frequency, ynormalized * frequency)

Amplitude

 Noise = perlin(x, y) * amplitude

Bring into range [0, 1]

 Noise is in [-1, 1]

 Add 1, Divide by 2

Using Perlin Noise

KOM – Multimedia Communications Lab 60

Using Perlin Noise

KOM – Multimedia Communications Lab 61

Using Perlin Noise

noise

noise(p) + ½ noise(2p) + ¼ noise(4p) ...
|noise(p)| + ½ |noise(2p)| +

¼ |noise(4p)| ...

sin(x + |noise(p)| + ½ |noise(2p)| + ...)

KOM – Multimedia Communications Lab 62

Julian Togelius

 IT University of Copenhagen

 http://julian.togelius.com/

Procedural Content Generation in Games - A textbook and an

overview of current research

 Available for free at http://pcgbook.com/

PCG Wiki

 http://pcg.wikidot.com

Ebert, Musgrave, Peacheay, Perlin, Worley:

Texturing & Modeling – A procedural approach

Literature

http://julian.togelius.com/
http://pcgbook.com/
http://pcg.wikidot.com/

KOM – Multimedia Communications Lab 63

One of the oldest fields of

procedural content generation

in computer graphics

Very much info available at :

http://algorithmicbotany.org/

Well suited for generation

 Based on natural processes

 Complexity makes the shapes look

realistic

 Can be found be examining how

nature handles growth

Vegetation

http://algorithmicbotany.org/

KOM – Multimedia Communications Lab 64

Prucinciewyz Lindenmayer

 Book „The algorithmic beauty of

plants“ is available for free at

virtualbotany

L-System

 Non-deterministic formal grammar

 Follows the rules of growth

Two growth processes

 Winter: Pruning of excess sprouts

 Spring: Creation of new sprouts

 Sprouts become branches over time

L-Systems

KOM – Multimedia Communications Lab 65

G = (V, ω, P)

V (the alphabet) is a set of symbols containing elements that can be

replaced (variables)

ω (start, axiom or initiator) is a string of symbols from V defining the initial

state of the system

P is a set of production rules or productions defining the way variables can

be replaced with combinations of constants and other variables.

A production consists of two strings, the predecessor and the successor.

For any symbol A in V which does not appear on the left hand side of a

production in P, the identity production A → A is assumed; these symbols

are called constants or terminals.

L-System

KOM – Multimedia Communications Lab 66

Example: Fractal plant

variables: X F

constants: + − []

start: X

Rules: (X → F-[[X]+X]+F[+FX]-X),

(F → FF)

angle: 25°

F: "draw forward“

-: "turn left 25°“

+: "turn right 25°“

X: Intermediate Symbol

[push position and angle

] pop position and angle

L-System Example

KOM – Multimedia Communications Lab 67

The resulting string is transformed into a mesh using a turtle

algorithm

Small branches and foliage as billboards

 Placement as determined by the system

Movement of the tree

 Simple animation where the top of the tree sways more than the bottom

 More physically correct: Simulate individual branches

L-Systems

KOM – Multimedia Communications Lab 68

Procedural Content Generation

 Allows for endless replay, unique game experiences

 Teleological Bottom Up

 Ontogenetic Top Down

Techniques and Algorithms for PCG

 Texture Generation

 Filtering

 Voronoi Diagrams

 Perlin Noise

Summary

KOM – Multimedia Communications Lab 69

So far, we have seldomly used virtual classes or inheritance

Overhead that this incurs

 Virtual function table

 Inlining not possible

Advantages

 Better coding style

 Build interfaces that other programmers can implement

Programming – Virtual classes, interfaces

KOM – Multimedia Communications Lab 70

Making the function

 Add the virtual keyword to a function declaration

class A {

virtual void foo(int a);

}

Deriving from the class

 Usually use class B: public A { };

Overriding methods

 Provide the function in the inheriting class

class B: public A {

virtual void foo(int a);

}

Virtual functions in C++

KOM – Multimedia Communications Lab 71

Implicit

A* a;

B b;

a = &b;

Explicit

A* a;

B b;

a = (A*) &b;

Casting

KOM – Multimedia Communications Lab 72

dynamic_cast (requires run-time type information RTTI)

 dynamic_cast<type>(pointer);

 Returns nullptr if the cast is not possible

 Can upcast and downcast

static_cast

 static_cast<type>(pointer);

 No type checks

reinterpret_cast

 All combinations

 Also cast integers to pointers

 Potentially evil

Casting

KOM – Multimedia Communications Lab 73

No dedicated keyword

virtual void abstract_function() = 0

Build interfaces from these

Abstract classes/functions

KOM – Multimedia Communications Lab 74

Constructors

 No-parameter constructor called automatically

 Constructors with parameters must be called in the initialization list

class Sub : public Base

{

Sub(int x, int y): Base(x), member(y)

{

}

Type member;

};

Virtual destructors

 Need to be virtual to be callable by a pointer to the base class

Constructors, Virtual destructors

KOM – Multimedia Communications Lab 75

Use with caution

Can make sense if you know what you are doing

 E.g. re-produce interfaces from other programming languages

Multiple Inheritance

KOM – Multimedia Communications Lab 76

A and B both override a function

of Base, AB doesn't

 Which option is chosen?

C++ requires you to explicitly tell

it which function you want

A::func() or B::func()

If virtual inheritance is used: Only

one Base object is used

If not or mixed: AB will have two

versions of Base, one via A, one

via B

Diamonds

Base

A B

AB

KOM – Multimedia Communications Lab 77

Virtual Classes in C++

 Use with care, especially in performance-critical (engine) code

 Useful for clean code

 Interfaces

Casting

 Types of casts in C++

Multiple Inheritance

 Suggestion: Use only with 1 regular base class + n pure abstract interfaces

 Diamond shapes

Conclusion

