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„Marbellous“

▪ Clone of „Marble Madness“ (1984)

▪ Roll a marble through a maze

Ball Physics

▪ Apply force based on key inputs

▪ Bounce off off the level geometry

▪ (Fall from too high)

Level

▪ Provided as a mesh

▪ „2D in 3D“

Background
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Collision with the level

▪ Level supplied by artist as 3D mesh

▪ How to handle the collisions with the mesh?

Friction

▪ Handle rotations

▪ Add friction

Controls

▪ Apply forces when keys are pressed

(Camera control)

▪ Keep the ball in view

▪ Don‘t follow every single movement

Adding Marble Physics to "Marbellous"
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Sometimes good placeholders for objects or level geometry, simple 

to test against

Planes

▪ Ground plane

▪ Simple intersection

Boxes

Spheres

Capsules

Hand-placed colliders
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Supplied as a texture or

generated

Gives height values at grid points

By interpolating, we can find the

height of the mesh under the

sphere and the normal

Height map
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Intersection with triangles

Check all triangles

If sphere intersects a triangle, handle the collision

Using the mesh itself
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Intersection with triangles

Check all triangles

If sphere intersects a triangle, handle the collision

If there are multiple collisions

▪ Handle only one (most prominent)

▪ Handle all

Using the mesh itself

?
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If two objects are separated, there must be an axis which separates 

the two objects

▪ („Separating Axis Theorem“  Not a theorem – follows from Hyperplane 

separation theorem by Hermann Minkowski)

▪ First mentioned in computer graphics in 1995

▪ Valid only for convex objects

Separating Axis Test
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More exact

▪ There must be points P1 and P2 of objects 1 and 2 such that the direction

resulting from P2 – P1 is a separating axis

▪ Separating Axis

▪ Project all points of the objects onto the separating axis

▪ We get the minimal and maximal points min1, min2 and max1, max2

▪ The objects are separated if max1 < min2 or max2 < min1

Separating Axis Test

min1 max1 min2 max2



KOM – Multimedia Communications Lab  10

What the separating axis is NOT

▪ The separating axis is not a line between the objects

▪ If the projections overlap, it is not a separating axis

▪  This can be referred to as separating plane

Separating Axis Test

min1 max1 min2 max2



KOM – Multimedia Communications Lab  11

This IS one possible separating axis

Separating Axis Test

min1 max1 min2 max2



KOM – Multimedia Communications Lab  12

Infinite set of possible points to test for

It can be proven that an upper boundary exists

▪ Only the relevant axes have to be tested for

▪ If separation exists on any axis, the test is done  early out for positive test

result

▪ If no separation exists, we still have to test all combinations of features  no

early out for negative tests

▪ Can be more efficient to reject the test based on other information, e.g. 

bounding boxes

For polygonal objects, the features are

▪ Faces

▪ Edges

▪ Vertices

Separating Axis Test
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Spheres have no clear feature points

We have already used the separating axis test, though

▪ The relevant features for two spheres are the two closest points of the spheres

▪ We find them by finding the axis from one sphere‘s center to the other‘s center

▪ The intersection test in the previous lecture used this axis for testing

intersections

Separating Axes for Spheres

min1 max1 min2 max2

P1 P2
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Relevant Features of the Triangle

▪ Face (x1)

▪ Vertices (x3)

▪ Edges (x3)

Relevant feature of the sphere

▪ The point on the surface closest to the feature of the triangle

Triangle-Sphere-Test

A

B

C
A

B

C A

B

C
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(We have done this test already – need to
define the plane)

Normal: Use the cross product (very useful
for finding normal vectors)

▪ n = normalize((B – A) x (C - A))

Distance

▪ Insert one of the points into the equation for
distance

▪ n*A – d = 0 (since A lies on the plane of the
triangle)

▪ n*A = d

Test for separation

▪ Separation = distance(Plane, P) > r

SAT: Face

A

B

C

P

r
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Here shown for A (similar for B and C)

Finding the sphere‘s feature

▪ Along the line from A to P

Compute distance from A to P

Separation (along this axis) if

▪ Distance d > r

▪ And B and C lie on the opposite side

SAT: Vertices

A

B

C

P

r
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Separation (along this axis) if

▪ Distance d > r

▪ And B and C lie on the opposite side

SAT: Vertices

A

B

C

P
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Separation (along this axis) if

▪ Distance d > r

▪ And B and C lie on the opposite side

SAT: Vertices

A

B

C
P
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Separation (along this axis) if

▪ Distance d > r

▪ And B and C lie on the opposite side

SAT: Vertices

A

B

C

P
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Separation (along this axis) if

▪ Distance d > r

▪ And B and C lie on the opposite side

SAT: Vertices

A

B

C

P
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Demonstration of “on the opposite side”

Calculate using the dot product of AC and AP, AB and AP

SAT: Vertices

A

B

C

P

A

B

C

P
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Separation (along this axis) if

▪ Distance d > r

▪ And B and C lie on the opposite side

 We assume that A-P is the separating axis

 No check if A is the closest point

 B and C might be separating axes!

SAT: Vertices

A

B

C

P
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Here shown: AB

Find a point for Q for which Q-P is a normal vector orthogonal to AB

 Projection of P onto AB

 Use the dot product (ideal for projecting vectors onto each other)

Determine the distance d of Q to P

AB defines a separating axis iff

▪ Distance d > r

▪ C lies on the other side of the plane

through AB with normal PQ

SAT: Edges

A

B

C

P

AC

BCAB
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AB defines a separating axis if

▪ Distance d > r

▪ C lies on the other side of the plane

through AB with normal PQ

SAT: Edges

A

B

C

P

AC

BCAB
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AB defines a separating axis if

▪ Distance d > r

▪ C lies on the other side of the plane

through AB with normal PQ

SAT: Edges

A

B

C

P

AC

BCAB
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AB defines a separating axis if

▪ Distance d > r

▪ C lies on the other side of the plane

through AB with normal PQ

SAT: Edges

A

B

C

P

AC

BCAB
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No collision possible (surrounding bodies are not overlapping)

Broad phase
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False positive, need to do more detailed collision test

 Go into narrow phase

 Can‘t know until we checked

Broad phase
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Broad Phase

Rule out as many possible

collisions

Only call narrow phase if

separation can not be proven

here

Reduce the problem

▪ Use spatial data structures (grid, 

octree, etc.)

▪ Use bounding volumes (and

bounding volume hierarchies)

Narrow Phase

Check for exact collisions

Use exact tests

▪ E.g. based on SAT

Should be much slower than

broad phase and therefore

seldomly called

Provide collision data to resolver

Broad Phase vs. Narrow Phase
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Testing every object against every object is not clever

Use a space partition

▪ Quadtree

▪ KD-Tree

▪ BSP

▪ Regular Grid

Speeding the calculation up
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Start with a rectangular shape

Subdivide the space into 4 or 8 subdivisions
of equal size if the number of contained
objects is too large

Until the required minimal number of objects
per subdivision is found

Advantages

▪ Still simple lookup where an object is placed

▪ Can handle clusters better

Disadvantages

▪ Can cope less with changing number and position of objects

Quadtree(2D), Octree(3D)
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Similar idea to Quad/Octree

Subdivide starting from a rectangular shape

Choose the subdividing line

▪ E.g. median point of the contained objects (cutting them in half)

Alternate axes for subdivision

Advantages:

▪ Well suited for clusters

Disadvantages

▪ Lookup harder than octree

KD-Tree
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Generalization of KD-Tree

Subdivide the space into half-spaces with arbitrary planes

Used previously to speed up rendering (Quake Engine)

Binary Space Partition
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Subdivide space regularly

E.g. specify
▪ Cell size in units

▪ Start point

For each cell
▪ Test if an object intersects (partly) with the cell

▪ If so, save a reference to this object

▪ (Objects can be in several cells)

Advantages
▪ Easy to compute

▪ Lookup of cells is trivial

Disadvantages
▪ Clusters or sparsity

Regular grid

Cell sizeStart point
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Fixed Time Step

▪ Explicit Time Step  Our method

▪ (Semi-)Implicit Time Step Method

▪ Try to predict the times of collisions and handle them at the beginning

Adaptive Time Step

▪ Retroactive Detection

▪ If there is interpenetration at t +deltaT, use deltaT *= 0.5 and retry

▪ Conservative Advancement

▪ Predict the next time of collision

▪ Advance to this time

Time Handling
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Check if an object moved through another in the frame

▪ On one side before, on one side after

▪ Swept shape algorithms

Time of impact ordering

Go to time of impact, resolve there

Continuous Collision Detection

Time Of Impact
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Calculate the distance to the collider

Remove just enough velocity so they touch in the next frame

Speculative Contact
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Calculate the distance to the collider

Remove just enough velocity so they touch in the next frame

Speculative Contact
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Stiff constraints

▪ Keep objects at an exact length compared to each other

▪ E.g. when attached to a steel cable

Springs

▪ Variable length between objects

▪ E.g. when attached to a bungee rope

Constraints
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Distance between two objects is determined to stay constant

 Separating Velocity between the two objects along the vector from

one to the other should be 0 at all times

Stiff Constraints - Rods
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Distance between two objects is determined to stay constant

 Separating Velocity between the two objects along the vector from

one to the other should be 0 at all times

Stiff Constraints - Rods

Counter the velocity
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Distance between two objects is determined to stay constant

 Separating Velocity between the two objects along the vector from

one to the other should be 0 at all times

Stiff Constraints - Rods
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Model a spring between two objects (one might be stationary)

Spring force

▪ Rest length (no force)

▪ Stiffness

▪ (Breaking point)

Spring Constraints
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F = -k * (l – l0)

F: Spring force

k: Spring constant (stiffness)

l: Current length of the spring

l0: Rest length of the spring

Apply the resulting force to the objects that are attached

(One might be immovable)

Hooke‘s Law
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Also a property of numerical systems

The stiffer, the more problems we face  exploding systems

J. D. Lambert : “If a numerical method with a finite region of absolute 

stability, applied to a system with any initial conditions, is forced to 

use in a certain interval of integration a steplength which is 

excessively small in relation to the smoothness of the exact solution 

in that interval, then the system is said to be stiff in that interval.”

Stiffness



KOM – Multimedia Communications Lab  46

Connect multiple particles with springs

Approximation for deformable objects

Often used for cloth

Problems/Challenges

▪ Stiff constraints

▪ Self-intersections

▪ Stability

Particle networks
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Cloth example
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Generalization of particle

networks

Finite Element Method from

Mechanics

Model forces inside the object

▪ Stress

▪ Strain

Gasses, Liquids

▪ Discretize into a vector field

▪ Calculate flow by solving the Navier-

Stokes-Equations

Deformable objects
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Impulse-based Micro-Collisions

▪ What we are using

Spring-Based

▪ Insert a spring at the point where the collision is detected

▪ Forces the objects out again

Constraint-Based

▪ Formulate the collisions as violations of constraints

Collision handling schemes
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Aka. Propagating Impulses 

Stability

▪ Add iterations

▪ Solve impulses in order of importance

Adaptive schemes

▪ Few, „large“ contacts  need fewer iterations

▪ Many contacts  need more iterations

Sequential Impulses
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Aka. Propagating Impulses 

Stability

▪ Add iterations

▪ Solve impulses in order of importance

Adaptive schemes

▪ Few, „large“ contacts  need fewer iterations

▪ Many contacts  need more iterations

Sequential Impulses



KOM – Multimedia Communications Lab  54

Constraint Vector

▪ For each collision or constraint

▪ Equality constraint

▪ Objects should stay at a fixed relative position

▪ Inequality constraints

▪ E.g. for separating objects after collisions

For each collision, add a constraint to the constraint vector

Results in a large system of equations

Solve via Linear Complementarity Problem (LCP)

Constraint-based
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Runge Kutta 4th order (RK 4)

▪ Approximate from 4 values

Velocity-less Verlet integration

▪ Uses no explicitly saved velocity

▪ Instead, uses position difference between this and previous calculation

𝑥 𝑡 + Δ𝑡 = 2𝑥 𝑡 − 𝑥 𝑡 − Δ𝑡 + Δ𝑇2𝑎

Other integrators

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

6
𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4

𝑡𝑛+1 = 𝑡𝑛 + ℎ

𝑘1 = 𝑓 𝑡𝑛, 𝑦𝑛

𝑘2 = 𝑓 𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

1

2
𝑘1ℎ

𝑘3 = 𝑓 𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

1

2
𝑘2ℎ

𝑘4 = 𝑓 𝑡𝑛 + ℎ, 𝑦𝑛 + 𝑘3ℎ
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Angular Velocity, Acceleration

▪ Save as additional properties

▪ Velocity: 3-Vector, Rotations around x, y, z axis

▪ Acceleration: Change in angular velocity

Mass Moment of Inertia

▪ Property that resists the change in angular velocity

Torque

▪ Force acting off-center

Rotation
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torque = p x f

p is the point of application

f is the force applied

Note: If p and f are in the same direction

 No torque

Torque

p

f
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Inertia Tensor – Generalized version of a matrix

For purposes of games, most often 3x3

Diagonal Matrix for moments of inertia about x, y, z-axis

Off-center entries encode product of inertia

See http://en.wikipedia.org/wiki/List_of_moments_of_inertia

Mass Moment of Inertia

𝐼 =

2

5
𝑚𝑟2 0 0

0
2

5
𝑚𝑟2 0

0 0
2

5
𝑚𝑟2

http://en.wikipedia.org/wiki/List_of_moments_of_inertia
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Remember the calculation of forces

𝑭 = 𝒎𝒂 ֜𝒂 =
𝑭

𝒎

We need the inverse of the inertia tensor for the equivalent formula

Additionally, need to transform to the world coordinate system

 Torques given in world coordinates

Inverse Inertia Tensor
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Add an accumulator for Torque

(D‘Alambert‘s Principle also works here)

Add all forces to linear accumulator

Calculate torque for each force

Add torques to torque accumulator

Integration

▪ Multiply inverse mass moment of inertia with sum of torques

Integration
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E.g. a box

Can collide with any feature

▪ Face

▪ Vertex

▪ Edge

If we handle only one feature, the others would sink

Sequential impulses

▪ One part starts sinking into the floor

▪ Push up  Rotation

▪ Continue

▪ Needs iterations to get stable

Handling non-spherical rigid bodies
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E.g. a box

Can collide with any feature

▪ Face

▪ Vertex

▪ Edge

If we handle only one feature, the others would sink

Sequential impulses

▪ One part starts sinking into the floor

▪ Push up  Rotation

▪ Continue

▪ Needs iterations to get stable

Handling non-spherical rigid bodies
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In the previous exercise, our spheres slided over the floor

No rotation

They came to rest because of dampening and not friction

Friction resists the spheres at the point of contact with the floor

▪ Rolling along the floor

▪ Different coefficients

▪ Ice

▪ Smooth floor

▪ Sand

▪ …

Friction
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Depends on

▪ normal force that presses the surfaces together

▪ coefficient of friction 

▪ Most dry materials have a coefficient of friction of 0.1 to 0.6

𝐹𝑓 Friction force

𝜇 Coefficient of friction

𝐹𝑛 Normal force

𝐹𝑓 ≤ 𝜇𝐹𝑛

In 3D

▪ Tangential plane

▪ Force lies in this plane

Coulomb‘s Law

𝐹𝑓

𝐹𝑛
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Static friction

▪ Keeps objects in place

▪ Start moving when the limit is overcome

▪ f_static <= k_static * |r|

▪ k_static: Constant for friction between the involved materials

▪ r: Reaction force of the ground at the point of contact

Dynamic friction

▪ Force between the objects while they are sliding across

▪ f_dynamic = -v_planar * k_dynamic * |r|

▪ v_planar: The velocity of the object across the surface

▪ k_dynamic: Constant for dynamic friction

Friction



KOM – Multimedia Communications Lab  66

Calculating friction requires us to calculate the velocity along the

contact

Handle collision with a collision basis

3 orthonormal vectors

▪ x: collision normal

▪ y, z: Perpendicular to x, define the plane of the contact

▪ Similar to the BTN-matrix for normal mapping

Contact basis
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x: Contact normal

y: Choose a vector perpendicular

to x

Cross product: A x B is

perpendicular to A and B 

(unless they are parallel)

Use an axis, e.g. global z

y = x x (0, 0, 1)

Choose third vector to be

perpendicular to x and y

z = x x y

Calculating the contact basis
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Find contact basis

Calculate the change in velocity of the contact point per unit impulse

Invert this to get a way to counter velocities

Calculate the x-term of the impulse (along the collision normal – our

old calculation)

Calculate the y and z-terms of the impulse (for friction)

Apply the impulse

Velocity resolution
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Find the collision normal and point of collision

Velocity resolution
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Find the collision normal and point of collision

Velocity resolution
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Find the collision basis

Velocity resolution
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Identify the velocity of the collision point
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Map velocity into the collision basis
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Separate the objects (what we did last lecture)

X-Axis (= collision Normal)
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Handle Friction

Y and Z-Axis
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Changes to velocity and rotation

Apply changes as impulses
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Collision Detection

▪ Narrow vs. Broad phase

▪ Geometrical data structures

▪ Separating axis test

Physics Implementations

▪ Different integrators

▪ Different schemes

Rotation

▪ Torque

▪ Resolving velocities with friction

Summary


