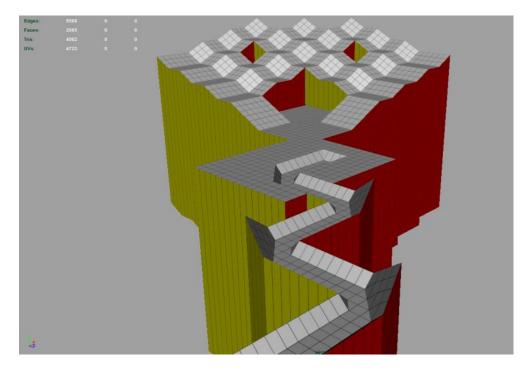
Game Technology

Lecture 9 – 19.12.2017 Physics 2



Dipl-Inf. Robert Konrad Polona Caserman, M.Sc.

Prof. Dr.-Ing. Ralf Steinmetz KOM - Multimedia Communications Lab

Background

"Marbellous"

- Clone of "Marble Madness" (1984)
- Roll a marble through a maze

Ball Physics

- Apply force based on key inputs
- Bounce off off the level geometry
- (Fall from too high)

Level

- Provided as a mesh
- "2D in 3D"

Adding Marble Physics to "Marbellous"

Collision with the level

- Level supplied by artist as 3D mesh
- How to handle the collisions with the mesh?

Friction

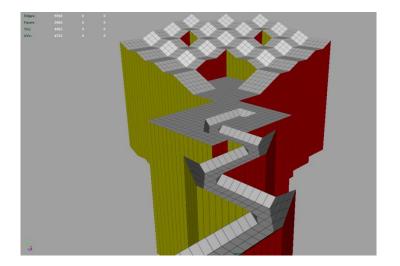
- Handle rotations
- Add friction

Controls

Apply forces when keys are pressed

(Camera control)

- Keep the ball in view
- Don't follow every single movement



Hand-placed colliders

Sometimes good placeholders for objects or level geometry, simple to test against

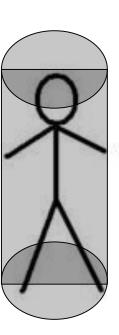
Planes

- Ground plane
- Simple intersection

Boxes

Spheres

Capsules

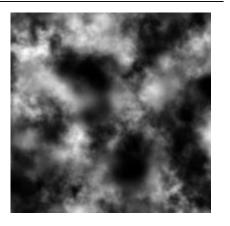


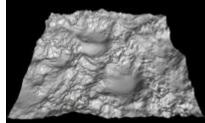
Height map

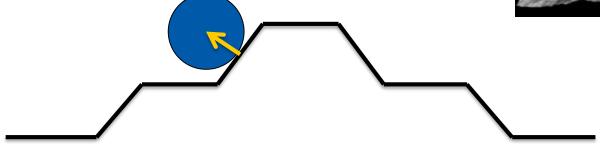
Supplied as a texture or generated

Gives height values at grid points

By interpolating, we can find the height of the mesh under the sphere and the normal





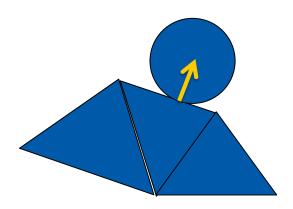


Using the mesh itself

Intersection with triangles

Check all triangles

If sphere intersects a triangle, handle the collision



Using the mesh itself

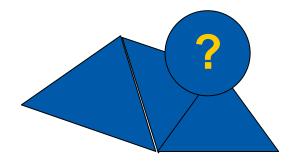
Intersection with triangles

Check all triangles

If sphere intersects a triangle, handle the collision

If there are multiple collisions

- Handle only one (most prominent)
- Handle all

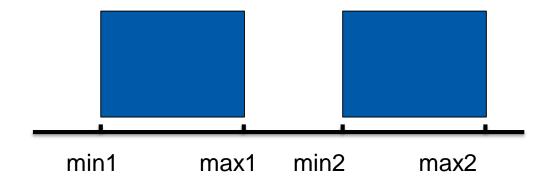


If two objects are separated, there must be an axis which separates the two objects

- ("Separating Axis Theorem" → Not a theorem follows from Hyperplane separation theorem by Hermann Minkowski)
- First mentioned in computer graphics in 1995
- Valid only for convex objects

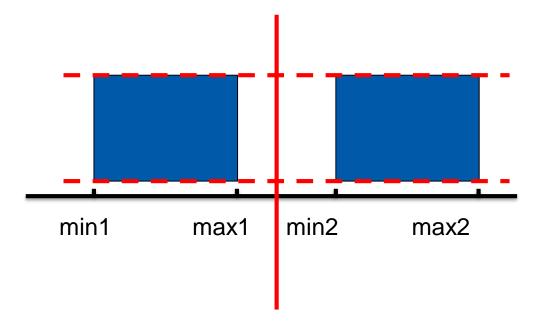
More exact

- There must be points P1 and P2 of objects 1 and 2 such that the direction resulting from P2 P1 is a separating axis
- Separating Axis
 - Project all points of the objects onto the separating axis
 - We get the minimal and maximal points min1, min2 and max1, max2
 - The objects are separated if max1 < min2 or max2 < min1</p>

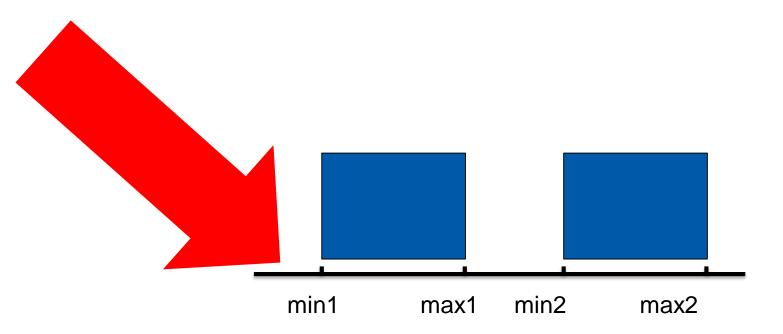


What the separating axis is NOT

- The separating axis is not a line between the objects
- If the projections overlap, it is not a separating axis
- → This can be referred to as separating plane



This IS one possible separating axis



Infinite set of possible points to test for

It can be proven that an upper boundary exists

- Only the relevant axes have to be tested for
- If separation exists on any axis, the test is done → early out for positive test result
- If no separation exists, we still have to test all combinations of features → no early out for negative tests
 - Can be more efficient to reject the test based on other information, e.g. bounding boxes

For polygonal objects, the features are

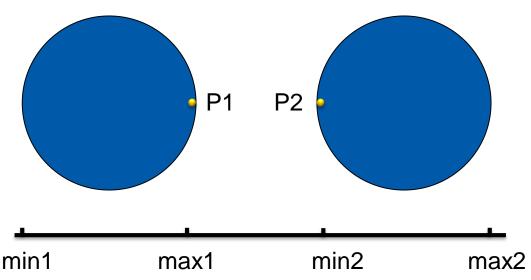
- Faces
- Edges
- Vertices

Separating Axes for Spheres

Spheres have no clear feature points

We have already used the separating axis test, though

- The relevant features for two spheres are the two closest points of the spheres
- We find them by finding the axis from one sphere's center to the other's center
- The intersection test in the previous lecture used this axis for testing intersections



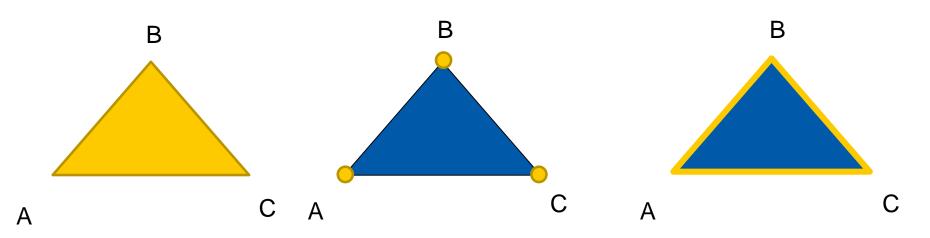
Triangle-Sphere-Test

Relevant Features of the Triangle

- Face (x1)
- Vertices (x3)
- Edges (x3)

Relevant feature of the sphere

The point on the surface closest to the feature of the triangle

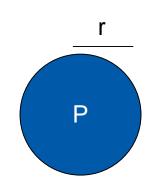


SAT: Face

(We have done this test already – need to define the plane)

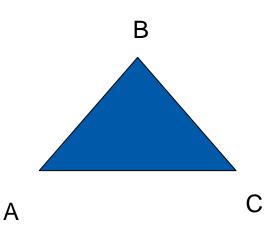
Normal: Use the cross product (very useful for finding normal vectors)

■ $n = normalize((B - A) \times (C - A))$



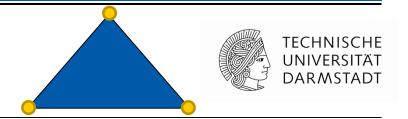
Distance

- Insert one of the points into the equation for distance
- n*A − d = 0 (since A lies on the plane of the triangle)
- $\rightarrow n^*A = d$



Test for separation

Separation = distance(Plane, P) > r

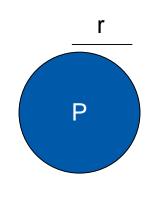


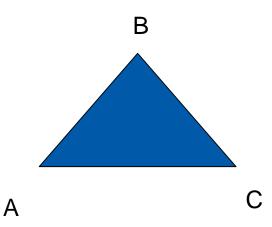
Here shown for A (similar for B and C) Finding the sphere's feature

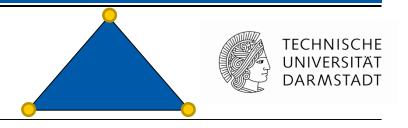
Along the line from A to P

Compute distance from A to P

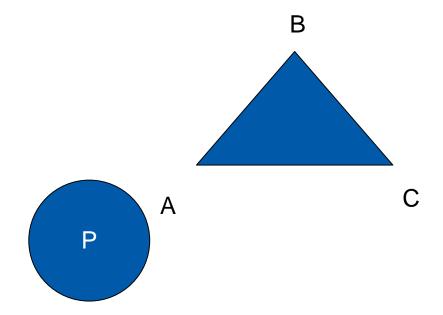
- Distance d > r
- And B and C lie on the opposite side

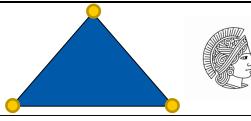




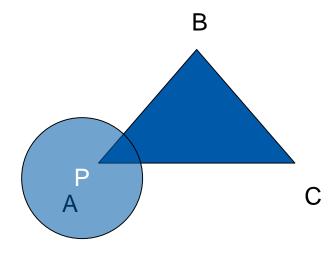


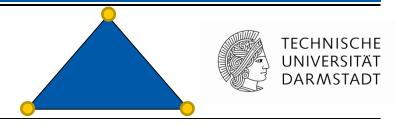
- Distance d > r
- And B and C lie on the opposite side



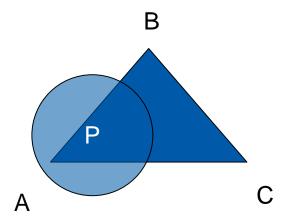


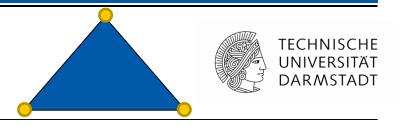
- Distance d > r
- And B and C lie on the opposite side



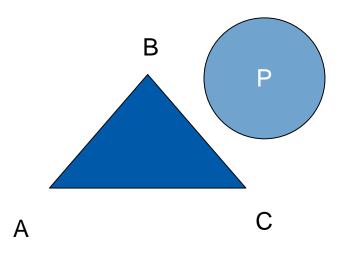


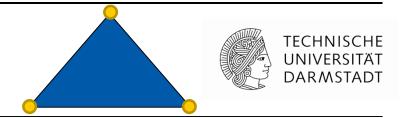
- Distance d > r
- And B and C lie on the opposite side



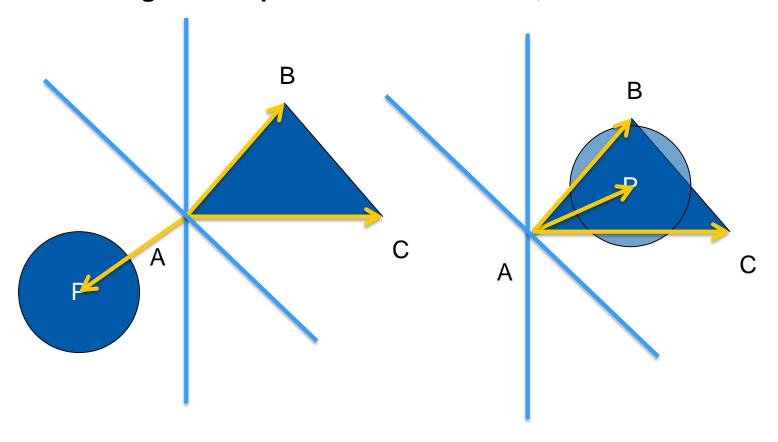


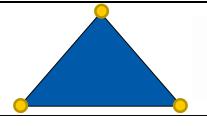
- Distance d > r
- And B and C lie on the opposite side



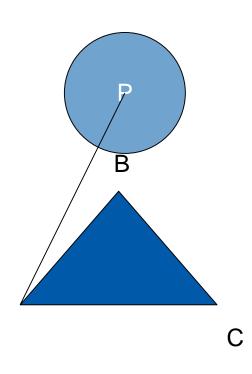


Demonstration of "on the opposite side" Calculate using the dot product of AC and AP, AB and AP





- Distance d > r
- And B and C lie on the opposite side
- → We assume that A-P is the separating axis
- → No check if A is the closest point
- → B and C might be separating axes!



Here shown: AB

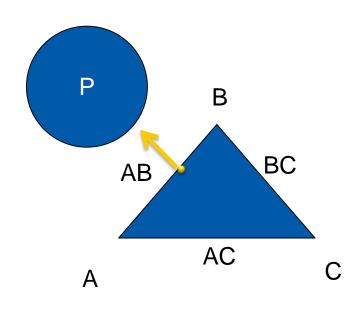
Find a point for Q for which Q-P is a normal vector orthogonal to AB

- → Projection of P onto AB
 - → Use the dot product (ideal for projecting vectors onto each other)

Determine the distance d of Q to P

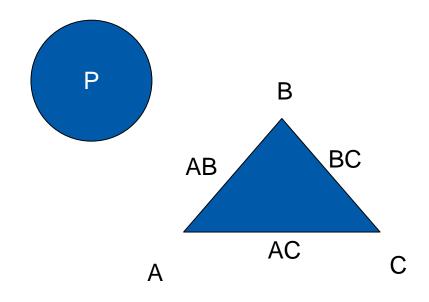
AB defines a separating axis iff

- Distance d > r
- C lies on the other side of the plane through AB with normal PQ



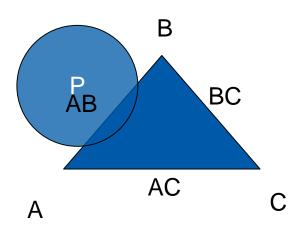
AB defines a separating axis if

- Distance d > r
- C lies on the other side of the plane through AB with normal PQ



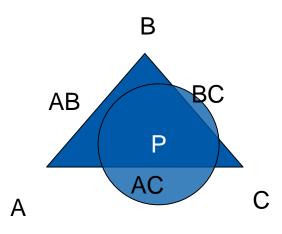
AB defines a separating axis if

- Distance d > r
- C lies on the other side of the plane through AB with normal PQ



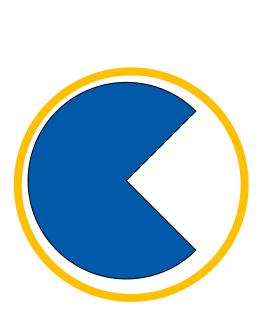
AB defines a separating axis if

- Distance d > r
- C lies on the other side of the plane through AB with normal PQ



Broad phase

No collision possible (surrounding bodies are not overlapping)

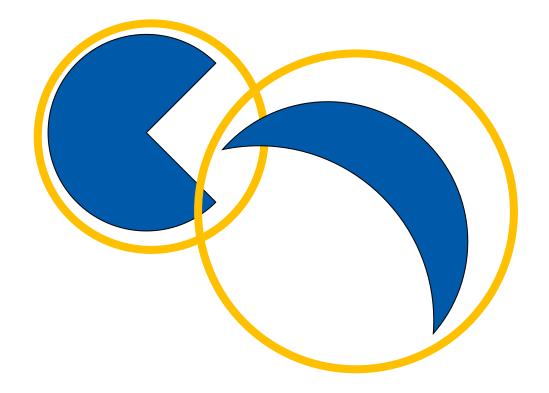




Broad phase

False positive, need to do more detailed collision test

- → Go into narrow phase
- → Can't know until we checked



Broad Phase vs. Narrow Phase

Broad Phase

Rule out as many possible collisions

Only call narrow phase if separation can not be proven here

Reduce the problem

- Use spatial data structures (grid, octree, etc.)
- Use bounding volumes (and bounding volume hierarchies)

Narrow Phase

Check for exact collisions

Use exact tests

E.g. based on SAT

Should be much slower than broad phase and therefore seldomly called

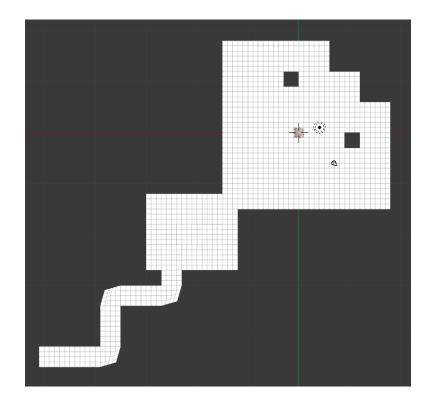
Provide collision data to resolver

Speeding the calculation up

Testing every object against every object is not clever

Use a space partition

- Quadtree
- KD-Tree
- BSP
- Regular Grid



Quadtree(2D), Octree(3D)

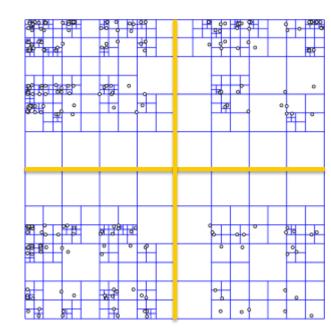
Start with a rectangular shape

Subdivide the space into 4 or 8 subdivisions of equal size if the number of contained objects is too large

Until the required minimal number of objects per subdivision is found

Advantages

- Still simple lookup where an object is placed
- Can handle clusters better.



Disadvantages

Can cope less with changing number and position of objects

KD-Tree

Similar idea to Quad/Octree Subdivide starting from a rectangular shape

Choose the subdividing line

E.g. median point of the contained objects (cutting them in half)

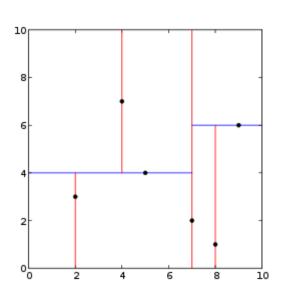
Alternate axes for subdivision

Advantages:

Well suited for clusters

Disadvantages

Lookup harder than octree

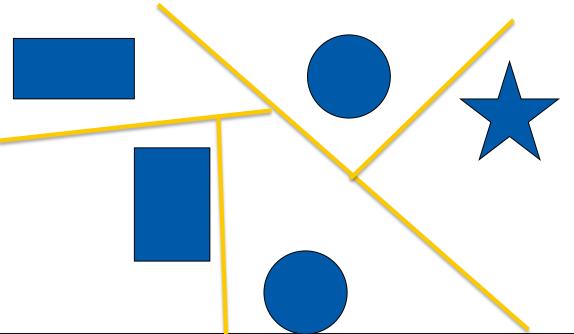


Binary Space Partition

Generalization of KD-Tree

Subdivide the space into half-spaces with arbitrary planes

Used previously to speed up rendering (Quake Engine)



Regular grid

Subdivide space regularly

E.g. specify

- Cell size in units
- Start point

For each cell

- Test if an object intersects (partly) with the cell
- If so, save a reference to this object
- (Objects can be in several cells)

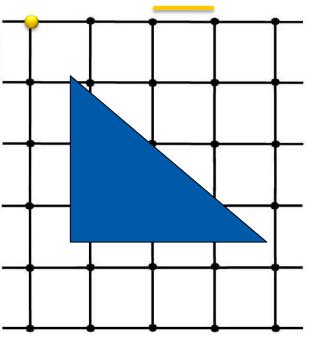
Advantages

- Easy to compute
- Lookup of cells is trivial

Disadvantages

Clusters or sparsity





Time Handling

Fixed Time Step

- Explicit Time Step → Our method
- (Semi-)Implicit Time Step Method
 - Try to predict the times of collisions and handle them at the beginning

Adaptive Time Step

- Retroactive Detection
 - If there is interpenetration at t +deltaT, use deltaT *= 0.5 and retry
- Conservative Advancement
 - Predict the next time of collision
 - Advance to this time

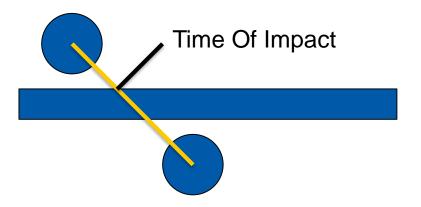
Continuous Collision Detection

Check if an object moved through another in the frame

- On one side before, on one side after
- Swept shape algorithms

Time of impact ordering

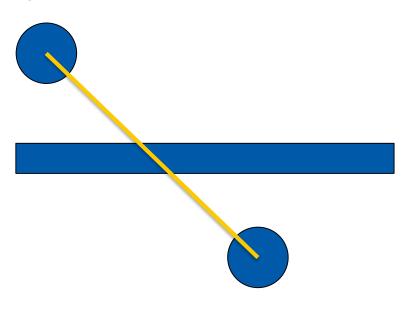
Go to time of impact, resolve there



Speculative Contact

Calculate the distance to the collider

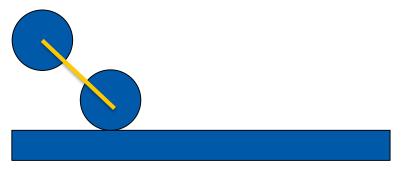
Remove just enough velocity so they touch in the next frame



Speculative Contact

Calculate the distance to the collider

Remove just enough velocity so they touch in the next frame



Constraints

Stiff constraints

- Keep objects at an exact length compared to each other
- E.g. when attached to a steel cable

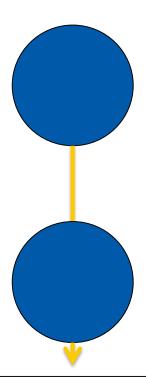
Springs

- Variable length between objects
- E.g. when attached to a bungee rope

Stiff Constraints - Rods

Distance between two objects is determined to stay constant

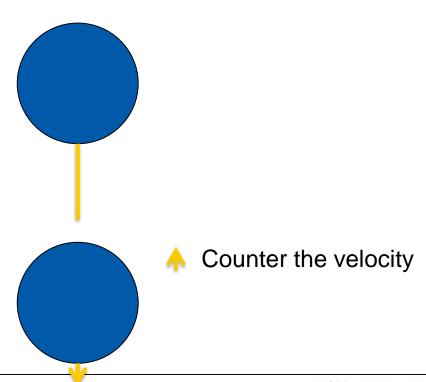
→ Separating Velocity between the two objects along the vector from one to the other should be 0 at all times



Stiff Constraints - Rods

Distance between two objects is determined to stay constant

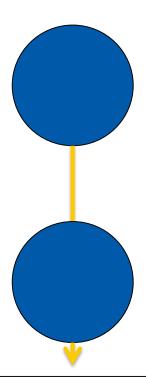
→ Separating Velocity between the two objects along the vector from one to the other should be 0 at all times



Stiff Constraints - Rods

Distance between two objects is determined to stay constant

→ Separating Velocity between the two objects along the vector from one to the other should be 0 at all times

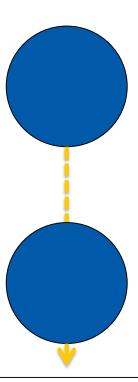


Spring Constraints

Model a spring between two objects (one might be stationary)

Spring force

- Rest length (no force)
- Stiffness
- (Breaking point)



Hooke's Law

$$F = -k * (I - I0)$$

F: Spring force

k: Spring constant (stiffness)

I: Current length of the spring

10: Rest length of the spring

Apply the resulting force to the objects that are attached (One might be immovable)

Stiffness

Also a property of numerical systems

The stiffer, the more problems we face \rightarrow exploding systems

J. D. Lambert: "If a numerical method with a finite region of absolute stability, applied to a system with any initial conditions, is forced to use in a certain interval of integration a steplength which is excessively small in relation to the smoothness of the exact solution in that interval, then the system is said to be stiff in that interval."

Particle networks

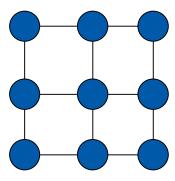
Connect multiple particles with springs

Approximation for deformable objects

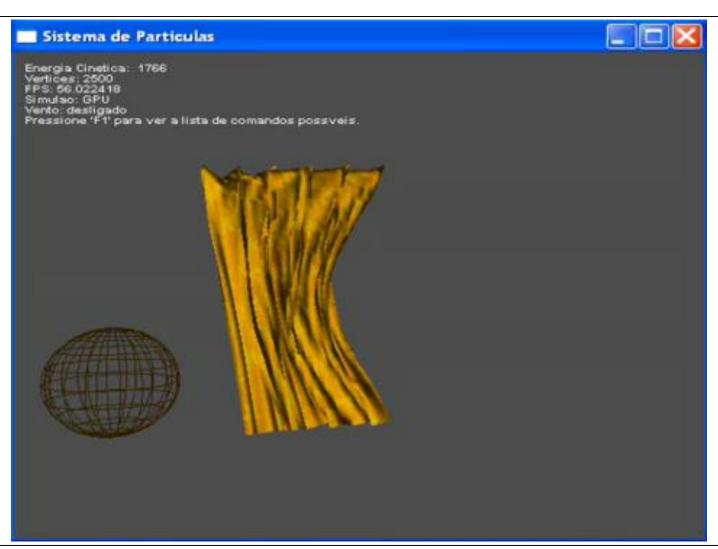
Often used for cloth

Problems/Challenges

- Stiff constraints
- Self-intersections
- Stability



Cloth example



Deformable objects

Generalization of particle networks

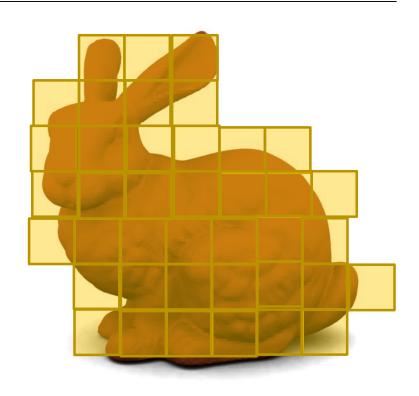
Finite Element Method from **Mechanics**

Model forces inside the object

- Stress
- Strain

Gasses, Liquids

- Discretize into a vector field
- Calculate flow by solving the Navier-Stokes-Equations



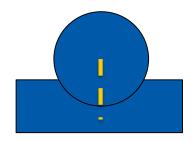
Collision handling schemes

Impulse-based Micro-Collisions

What we are using

Spring-Based

- Insert a spring at the point where the collision is detected
- Forces the objects out again



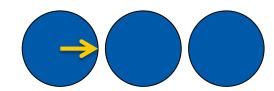
Constraint-Based

Formulate the collisions as violations of constraints

Aka. Propagating Impulses

Stability

- Add iterations
- Solve impulses in order of importance

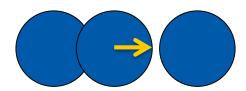


- Few, "large" contacts → need fewer iterations
- Many contacts → need more iterations

Aka. Propagating Impulses

Stability

- Add iterations
- Solve impulses in order of importance

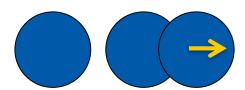


- Few, "large" contacts → need fewer iterations
- Many contacts → need more iterations

Aka. Propagating Impulses

Stability

- Add iterations
- Solve impulses in order of importance



- Few, "large" contacts → need fewer iterations
- Many contacts → need more iterations

Aka. Propagating Impulses

Stability

- Add iterations
- Solve impulses in order of importance

- Few, "large" contacts → need fewer iterations
- Many contacts → need more iterations

Constraint-based

Constraint Vector

- For each collision or constraint
- Equality constraint
 - Objects should stay at a fixed relative position
- Inequality constraints
 - E.g. for separating objects after collisions

For each collision, add a constraint to the constraint vector

Results in a large system of equations

Solve via Linear Complementarity Problem (LCP)

Other integrators

Runge Kutta 4th order (RK 4)

Approximate from 4 values

$$y_{n+1} = y_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$
$$t_{n+1} = t_n + h$$

$$k_1 = f(t_n, y_n)$$

$$k_2 = f\left(t_n + \frac{h}{2}, y_n + \frac{1}{2}k_1h\right)$$

$$k_3 = f\left(t_n + \frac{h}{2}, y_n + \frac{1}{2}k_2h\right)$$

$$k_4 = f(t_n + h, y_n + k_3 h)$$

Velocity-less Verlet integration

- Uses no explicitly saved velocity
- Instead, uses position difference between this and previous calculation

$$x(t + \Delta t) = 2x(t) - x(t - \Delta t) + \Delta T^{2}a$$

Rotation

Angular Velocity, Acceleration

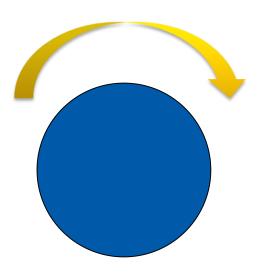
- Save as additional properties
- Velocity: 3-Vector, Rotations around x, y, z axis
- Acceleration: Change in angular velocity

Mass Moment of Inertia

Property that resists the change in angular velocity

Torque

Force acting off-center

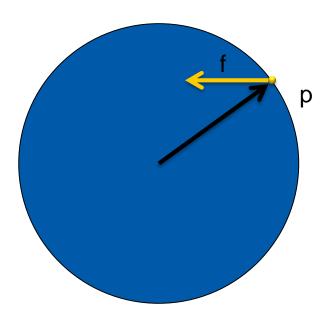


Torque

torque = p x f p is the point of application f is the force applied

Note: If p and f are in the same direction

→ No torque



Mass Moment of Inertia

Inertia Tensor – Generalized version of a matrix

For purposes of games, most often 3x3

Diagonal Matrix for moments of inertia about x, y, z-axis Off-center entries encode product of inertia

See http://en.wikipedia.org/wiki/List_of_moments_of_inertia

$$I = \begin{bmatrix} \frac{2}{5}mr^2 & 0 & 0\\ 0 & \frac{2}{5}mr^2 & 0\\ 0 & 0 & \frac{2}{5}mr^2 \end{bmatrix}$$

Inverse Inertia Tensor

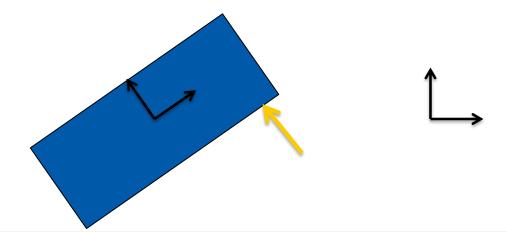
Remember the calculation of forces

$$F = ma \Rightarrow a = \frac{F}{m}$$

We need the inverse of the inertia tensor for the equivalent formula

Additionally, need to transform to the world coordinate system

→ Torques given in world coordinates



Integration

Add an accumulator for Torque (D'Alambert's Principle also works here)

Add all forces to linear accumulator

Calculate torque for each force

Add torques to torque accumulator

Integration

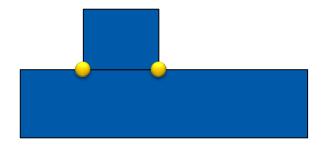
• Multiply inverse mass moment of inertia with sum of torques

Handling non-spherical rigid bodies

E.g. a box

Can collide with any feature

- Face
- Vertex
- Edge



If we handle only one feature, the others would sink

Sequential impulses

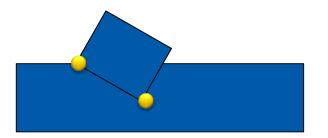
- One part starts sinking into the floor
- Push up → Rotation
- Continue
- Needs iterations to get stable

Handling non-spherical rigid bodies

E.g. a box

Can collide with any feature

- Face
- Vertex
- Edge



If we handle only one feature, the others would sink

Sequential impulses

- One part starts sinking into the floor
- Push up → Rotation
- Continue
- Needs iterations to get stable

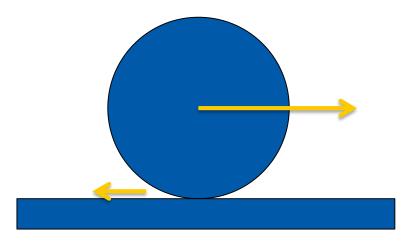
Friction

In the previous exercise, our spheres slided over the floor

- → No rotation
- →They came to rest because of dampening and not friction

Friction resists the spheres at the point of contact with the floor

- Rolling along the floor
- Different coefficients
 - Ice
 - Smooth floor
 - Sand



Coulomb's Law

Depends on

- normal force that presses the surfaces together
- coefficient of friction
 - Most dry materials have a coefficient of friction of 0.1 to 0.6

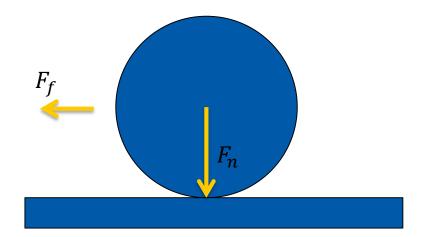
 F_f Friction force

 μ Coefficient of friction

 F_n Normal force

$$F_f \leq \mu F_n$$

- Tangential plane
- Force lies in this plane



Friction

Static friction

- Keeps objects in place
- Start moving when the limit is overcome
- f_static <= k_static * |r|</p>
- k_static: Constant for friction between the involved materials
- r: Reaction force of the ground at the point of contact

Dynamic friction

- Force between the objects while they are sliding across
- f_dynamic = -v_planar * k_dynamic * |r|
- v_planar: The velocity of the object across the surface
- k_dynamic: Constant for dynamic friction

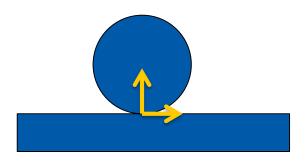
Contact basis

Calculating friction requires us to calculate the velocity along the contact

Handle collision with a collision basis

3 orthonormal vectors

- x: collision normal
- y, z: Perpendicular to x, define the plane of the contact
- Similar to the BTN-matrix for normal mapping



Calculating the contact basis

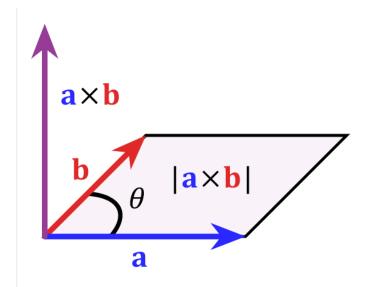
x: Contact normal

y: Choose a vector perpendicular to x

Cross product: A x B is perpendicular to A and B (unless they are parallel) Use an axis, e.g. global z $y = x \times (0, 0, 1)$

Choose third vector to be perpendicular to x and y

$$z = x \times y$$



Find contact basis

Calculate the change in velocity of the contact point per unit impulse

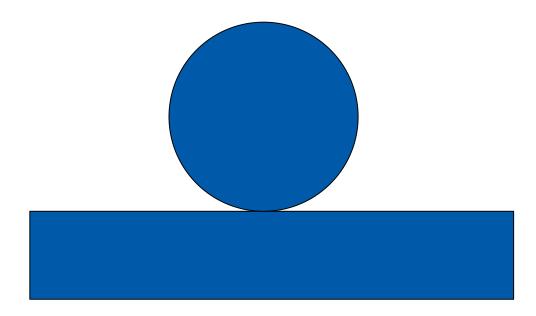
Invert this to get a way to counter velocities

Calculate the x-term of the impulse (along the collision normal – our old calculation)

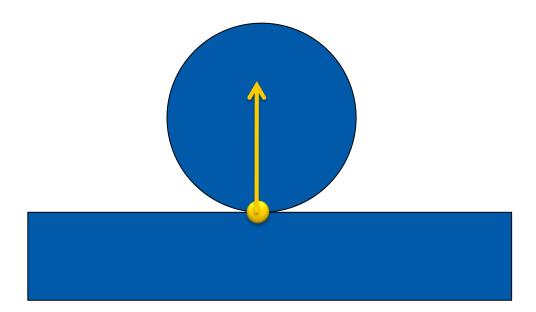
Calculate the y and z-terms of the impulse (for friction)

Apply the impulse

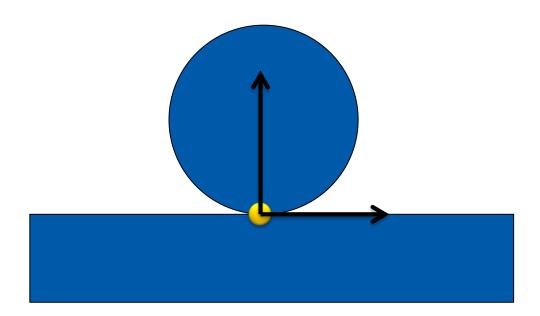
Find the collision normal and point of collision



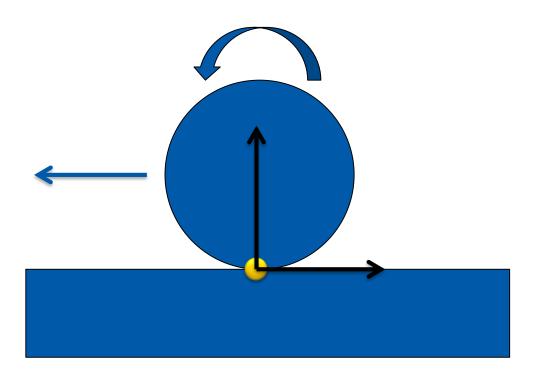
Find the collision normal and point of collision



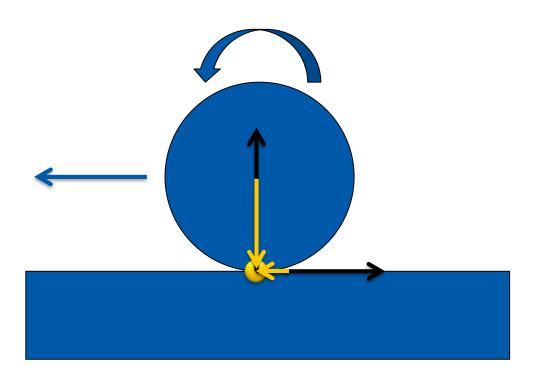
Find the collision basis



Identify the velocity of the collision point

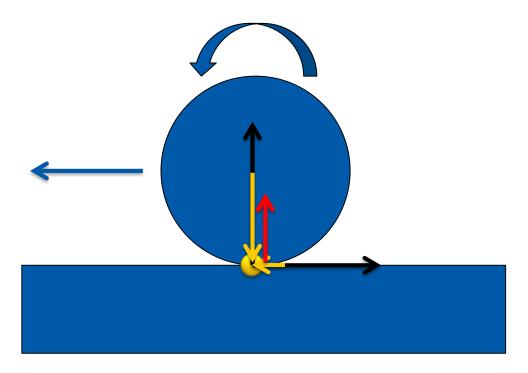


Map velocity into the collision basis



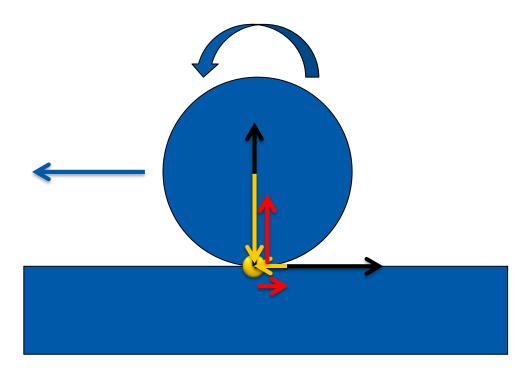
X-Axis (= collision Normal)

Separate the objects (what we did last lecture)



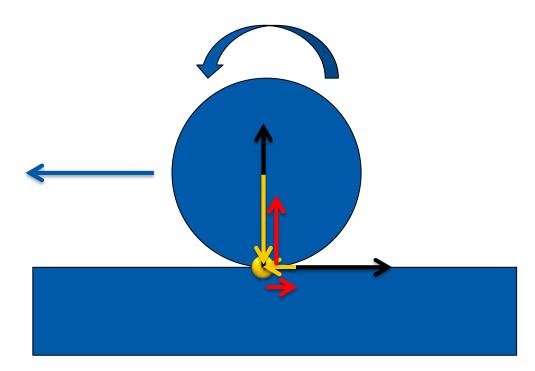
Y and Z-Axis

Handle Friction



Apply changes as impulses

Changes to velocity and rotation



Summary

Collision Detection

- Narrow vs. Broad phase
- Geometrical data structures
- Separating axis test

Physics Implementations

- Different integrators
- Different schemes

Rotation

- Torque
- Resolving velocities with friction