
© author(s) of these slides including research results from the KOM research network and TU Darmstadt; otherwise it is specified at the respective slide
12-Dec-17

Prof. Dr.-Ing. Ralf Steinmetz
KOM - Multimedia Communications Lab

Template all v.3.4
PPT-for-all___v.3.4_office2010___2012.09.10.pptx

Game Technology
Lecture 8 – 12.12.2017

Physics 1

Dipl-Inform. Robert Konrad
Polona Caserman, M.Sc.

KOM – Multimedia Communications Lab 2

Today
§ As easy as possible
§ Build a simple demo with
§ Particle system
§ Colliding spheres

§ Understand the basic principles

Next block
§ Build upon what we have learned
§ Look at more complicated case
§ Apply the physics in a game-like application

Overview

KOM – Multimedia Communications Lab 3

„Marbellous“
§ Clone of „Marble Madness“ (1984)
§ Roll a marble through a maze

Ball Physics
§ Apply force based on key inputs
§ Bounce off off the level geometry
§ (Fall from too high)

Level
§ Provided as a mesh
§ „2D in 3D“

Background

KOM – Multimedia Communications Lab 4

Tony Hawk’s Pro Skater 5 (2015)

https://www.youtube.com/watch?v=JIXkRXYbKaI

KOM – Multimedia Communications Lab 5

Skyrim
https://www.youtube.com/watch?

v=O2UDHkTITMk

Skate 3
https://www.youtube.com/watch?

v=UaUR6u8nHoM

Assassin‘s Creed
https://www.youtube.com/watch?

v=WyovOrA64B8

Physics gone wrong…

KOM – Multimedia Communications Lab 6

Special-Purpose Physics
§ Like the games, built for one purpose/game
§ E.g. Asteroids, Marble Madness, …

Built for enjoyment and good gameplay feeling
§ Physical accuracy not important
§ E.g. Mario’s momentum and friction

Physics History

KOM – Multimedia Communications Lab 7

3D Physics
§ Now more important to get realistic feel
§ Started out with solutions developed in-house
§ E.g. Trespasser (1998), own engine

Ragdoll Physics
§ Physical Simulation for articulated bodies
§ Previously only for unconcious characters
§ Now mixed with forward kinematics

Physics History

KOM – Multimedia Communications Lab 8

Trespasser (1998)

https://www.youtube.com/watch?v=i6cWEbkBeZQ

KOM – Multimedia Communications Lab 9

Libraries – Re-usable for different games
§ Bullet
§ Box2D
§ …

Hardware Acceleration
§ Nvidia Physx
§ Uses CUDA General-Purpose GPU Calculations
§ E.g. for particle systems
§ Source code available since 2015

General-Purpose Physics

KOM – Multimedia Communications Lab 10

Newtonian Physics

Isaac Newton
1643 - 1727

KOM – Multimedia Communications Lab 11

I. Every object in a state of uniform motion tends to remain in that
state of motion unless an external force is applied to it.

II. The relationship between an object's mass m, its acceleration a,
and the applied force F is F = ma. Acceleration and force are
vectors (as indicated by their symbols being displayed in slant
bold font); in this law the direction of the force vector is the same
as the direction of the acceleration vector.

III. For every action there is an equal and opposite reaction.

Newton’s three laws

KOM – Multimedia Communications Lab 12

Every object in a state of uniform motion tends to remain in that state
of motion unless an external force is applied to it.

Examples of forces
§ Gravity
§ Drag
§ Explosions
§ …

à If we have an object that is just floating in space, simulation is very
easy

à Just continue with the same velocity in the same direction

Law #1

KOM – Multimedia Communications Lab 13

The relationship between an object's mass m, its acceleration a, and
the applied force F is F = ma. Acceleration and force are vectors (as
indicated by their symbols being displayed in slant bold font); in
this law the direction of the force vector is the same as the direction
of the acceleration vector.

Mass m
§ Measures the mass, not the weight
§ The property that resists changes in linear or angular velocity

Acceleration a
§ Measure of the change of velocity

Force F

Law #2

KOM – Multimedia Communications Lab 14

For every action there is an equal and opposite reaction.

We need to take care of this when we are simulating collisions
§ Collision Detection
§ Collision Response
à This is where the fun begins ;-)

Law #3

KOM – Multimedia Communications Lab 15

Forces being applied to an object
add up (Vector sums)

Will save us computational time
and make code more readable
§ Calculating the effect of each force

individually
§ Vs

§ Accumulating forces and calculating
the effect of the sum of the forces

D‘Alambert‘s Prinicple

F1F2

F3

F1F2

F3

F1+F2+F3

KOM – Multimedia Communications Lab 16

Particle
§ Infinitisemally small object
à No need to calculate rotations,
forces off-center
à No volume

Origins
§ William T. Reeves: „Particle Systems
A Technique for Modeling a Class of
Fuzzy Objects”, 1983
§ Worked on “Star Trek 2 – The Wrath
of Khan”

Particle Systems

KOM – Multimedia Communications Lab 17

Use in Games today
§ Gaseous effects
§ Fire
§ Smoke
§ Gasses

§ Explosions
§ Atmospheric effects

Basis for advanced techniques
§ Cloth simulation
§ Hair simulation
§ Fluid simulation

Particle Systems

KOM – Multimedia Communications Lab 18

Emitter
§ Geometric shape in which the particles are spawned
§ Spheres
§ Boxes
§ Complex polyhedra (meshes)
§ Planes
§ …

Emission Control
§ Position (on faces, vertices, edges, inside the volume, …)
§ Random positioning of the emitted particles
§ Number of particles
§ Initial velocity
§ Other particle properties

Particle Systems

Center

KOM – Multimedia Communications Lab 19

Goal: Render an amorphous/gaseous “alien”

Two particle systems
§ One emits particles that are rendered, no gravity
§ One emits invisible particles
§ From the shape of the mesh
§ No velocity, no gravity
§ Brownian motion
§ Act as attractors for the other particles

Example – Particle systems shaping objects

KOM – Multimedia Communications Lab 20

Example – Particle setup in Blender

KOM – Multimedia Communications Lab 21

Example – Rendering to 2D

KOM – Multimedia Communications Lab 22

Initial position
§ Jittering – amount of randomness

Spawn rate
§ The rate itself
§ Changes over time
§ All at once, over a certain time, continuuously, maximal number of particles, …

Initial direction & velocity
§ Direction (straight up, sidewards, …)
§ Velocity

Gravity

Particle system control parameters

KOM – Multimedia Communications Lab 23

Other forces
§ Wind
§ Player interaction
§ …

Time to live

2nd and further levels
§ Spawn new particles at the end of the life cycle
§ E.g. used for fireworks

Animation
§ Control shape, size, transparency, sprite or any other parameter over time

Particle system control parameters

KOM – Multimedia Communications Lab 24

Billboards
§ Textures with (alpha) textures
§ Simple geometry (can be instanced)

Rotating the particles to the camera
§ Use the inverse of the view matrix
§ View matrix is usually Translation and Rotation
§ We only care about the rotation part
§ à Orthogonal matrix, can be inverted by transposing

Depth-Sorting the particles
§ Use the transformed z-value of the particle
§ Sometimes not necessary – can be a performance setting

Trails

Rendering Particles

KOM – Multimedia Communications Lab 25

Quads
§ Oriented towards the camera
§ In all directions (e.g. particles)
§ Only in one axis (e.g. vertical objects such as

trees)

Several quads
§ Placed around central axes
§ E.g. for trees, bushes (vertical)
§ Or beams (along the central axis)
§ Not oriented towards the camera à one side

always visible to a certain degree

Types of Billboards

KOM – Multimedia Communications Lab 26

Gravity: Little to none (fire moves upward)
Lifetime: Such that the flames do not rise unrealistically high
Emission: Continuously
Texture: Simple texture with alpha (to get round look)
Tint
§ Control parameter that can be animated over the lifetime of the particle
§ Color value
§ Simple case: Color 1 at birth, Color 2 at death
§ More complicated cases: Provide intermediate key colors

§ Supply to shader via a uniform
§ Write the tint-color as rgb and use alpha from the texture

Example: Fire

KOM – Multimedia Communications Lab 27

We need to simulate the effect of forces on the particles

Closed solution not tractable for real-time interaction and especially
player interactions

Numerical integration
§ Simplest approach: Euler integration

Integration for particles

KOM – Multimedia Communications Lab 28

Apply Newton‘s second law

Newton‘s second law:
𝐹 = 𝑚	 % 𝑎
𝑎 = �̇�
𝑣 = �̇�

By transforming, this can be rephrased as a differential equation for
the second derivative of the position, depending on the mass
(assumed to be constant) and the force(s) acting on the object at
time 𝑡.

𝑭: force
𝒎:mass

𝒂: acceleration
𝒗: velocity
𝒙: position

�̈� =
𝑭
𝒎

KOM – Multimedia Communications Lab 29

Solve the differential equation

Usually done numerically

Easiest algorithm: Euler method

First step: Velocity

�̈� = �̇� =
𝐹
𝑚

𝑣1234 = 𝑣1 +	
𝐹
𝑚
Δ1

Second step: Position
𝑥1234 = 𝑥1 + 𝑣1Δ1

𝒕: 𝑷𝒓𝒆𝒗𝒊𝒐𝒖𝒔	𝒕𝒊𝒎𝒆
𝚫𝒕: 𝑻𝒊𝒎𝒆𝒔𝒕𝒆𝒑

𝐭 + 𝚫𝒕: 𝑪𝒖𝒓𝒓𝒆𝒏𝒕	𝒕𝒊𝒎𝒆

KOM – Multimedia Communications Lab 30

With game‘s frame rate
§ Update each frame
§ Keep track of the last frame time
§ Only an approximation of the next frame‘s

duration
§ Watch out for paused game (e.g. tabbed out

of the window)

Independent
§ Simulate independently of frame rate
§ Sub-frame calculations à more exact
§ Can adapt
§ If nothing happens, use large time step
§ Go to important moments (collisions)

Time

t1 t2
deltaT

KOM – Multimedia Communications Lab 31

High Precision Event Timer (HPET)
§ Found in chipsets starting in 2005
§ 64 bit counter
§ Counts up with a frequency of at least 10 MHz
§ OS sets up an interrupt with a certain frequency

Getting the time
§ Divide the counter value by the frequency
§ Watch out for large values (e.g. PC in standby over weeks)

Time Source

KOM – Multimedia Communications Lab 32

Solid bodies that do not deform

Added properties
§ Center of mass
§ Rotation
§ Angular velocity
§ Angular acceleration
§ Moment of inertia

Rigid Bodies

KOM – Multimedia Communications Lab 33

Mass: The property that resists changes in velocity

Center of mass
§ Manually: Defined by artist
§ Automatically: Assume uniform distribution
§ Integrate over the volume of the body

Force applied in line with the center of mass change only linear
velocity
§ Easiest way to handle collisions
§ But not very realistic

Basic Terms

KOM – Multimedia Communications Lab 34

Could sample the body at regular intervals
§ 𝑥F position of element 𝑖
§ 𝑚F mass of element 𝑖

𝐶 =I𝑥F𝑚F

J

FKL

Formula exists for polyhedra (assuming they are uniformly dense)
§ 𝑉 Volume, 𝑛F normal of face 𝑖, 𝑎F, 𝑏F, 𝑐F vertices

𝐶 =
1
2𝑉

I
1
24

J

FKL

𝑛F [𝑎F+𝑏F V + 𝑏F + 𝑐F V + 𝑐F + 𝑎F V)

http://wwwf.imperial.ac.uk/~rn/centroid.pdf

Benefitial to save the object so that object space origin = center of
mass

Calculating the center of mass

KOM – Multimedia Communications Lab 35

Captures the way in which a body resists changes to angular velocity

Think of non-uniform objects
§ Pushing at different points leads to different results

More in the next lecture

Moment of Inertia

KOM – Multimedia Communications Lab 36

~ „Angular acceleration“

Forces that act off the center of balance

More info in next lecture

Torque

KOM – Multimedia Communications Lab 37

Information we need to calculate a response
§ Was there a collision?
§ What was the collision normal?
§ How far are the objects interpenetrating?

Collision Detection

KOM – Multimedia Communications Lab 38

Easiest intersection

The spheres intersect if the distance of the centers is less than the
sum of the radii

Collision normal can be found as the direction of one sphere’s center
to the other

Penetration depth is the difference between the sum of the radii and
the distance of the center’s positions from each other

Intersection Sphere - Sphere

KOM – Multimedia Communications Lab 39

Intersection Sphere - Sphere

KOM – Multimedia Communications Lab 40

Describe the plane as
§ Normal n
§ Distance along this normal D from the origin

Then, for every point on the surface of the plane, the following equation
holds:

𝒙 % 𝒏 = 𝑫

We can use the following formula to get a signed distance from the
plane:

𝒅 = 𝒙 % 𝒏 − 𝑫

Implicit formula
§ Gives us a signed distance
§ = 0 everywhere on the surface of the plane
§ Distance to the plane everywhere else
§ Sign indicates direction (with normal, in the opposite direction)

Intersection Plane - Sphere

KOM – Multimedia Communications Lab 41

Intersection Plane - Sphere

KOM – Multimedia Communications Lab 42https://www.youtube.com/watch?v=sVTJNv3-mWk

Elastic Collisions

KOM – Multimedia Communications Lab 43

Separate objects
§ In reality: Elastic collision à energy is absorbed
§ Approximate using coeffiction of restitution (COR)
§ Float between 0 and 1 à indicates the amount of speed retained after the

collision
§ COR = 1 à No energy lost

Immovable Objects
§ Infinite mass
§ Save as inverse mass
§ Needed for calculations this way already
§ Infinite mass à Inverse mass = 0

Collision Response

KOM – Multimedia Communications Lab 44

Calculate the collision normal
§ Direction along which the two objects are colliding
§ Plane-Sphere: Use the plane’s normal
§ Sphere-Sphere (for now): Use the vector from one sphere’s center to the other’s

center

Calculate the separating velocity
§ Velocity with which the objects are moving apart plus direction
§ Sum of velocities projected onto the collision normal
§ Careful with signs
§ Velocity < 0: Colliding
§ Velocity = 0: Resting/Sliding
§ Velocity = > 0: Separating (Nothing to do, yay J)

Collision between two objects

KOM – Multimedia Communications Lab 45

Calculate a new separating velocity
§ Using the coefficients of restitution and mass of the involved objects

Calculate an impulse that changes the velocity accordingly
§ Instantaneous change in velocity
§ In reality: Forces acting over very small times

Solve the interpenetration
§ Move the objects so that they are not colliding any more
§ Along the collision normal
§ With the aspect ratio of the weights involved
§ Immovable object (e.g. ground): Movable object has to move

Apply the impulses
§ = Adding to the current velocity

Collision between two objects

KOM – Multimedia Communications Lab 46

Ignoring interpenetration
§ Just calculate separating velocity
§ Objects „hammer“ themselves into the ground
§ On each collision, the object settles a bit more into the

ground
§ à Move the object out of the ground

Problems – Interpenetration

KOM – Multimedia Communications Lab 47

Reality – Objects do not interpenetrate
§ Deformation
§ Energy shifted between the materials

Resting Contact
§ Ground supports the resting object
§ à Force that counters gravity

Ways to reduce/eliminate bouncing
§ Add an additional impulse to counter the effect of

gravity in the next frame
§ Put objects to sleep when their energy goes low

enough

Problems – Bouncing, Resting

KOM – Multimedia Communications Lab 48

In many games, most objects will be resting most of the time
§ They only move when a script or a player action causes them to move

Identify when objects do not need to be simulated any more
§ Start in a stable position (level design) and sleep initially
§ Recognize that the energy is low enough

Wake up again
§ Whenever the object takes part in the physical simulation
§ Identify „Islands“
§ Groups of objects that should wake up together
§ E.g. the billard balls in the start configuration

Sleeping

KOM – Multimedia Communications Lab 49

§ Particle Systems
§ Emitters
§ Billboarding
§ Control parameters

§ Numerical integration
§ Euler integrator

§ Collision detection and Collision resolution
§ Collision between spheres
§ Collision sphere-plane

Summary

KOM – Multimedia Communications Lab 50

“Game Physics Engine
Development”, Ian Millington

“Real-Time Collision Detection”,
Christer Ericson

Box2D blog http://box2d.org/

Literature

KOM – Multimedia Communications Lab 51

Will be up after the lecture

Particle System
§ Orient billboards to the camera
§ Implement one new control parameter
§ Free choice of effect
§ Gas
§ Explosion
§ Rain
§ …

§ If you can’t think of anything, use the fire example

Exercise

KOM – Multimedia Communications Lab 52

Physical Simulation
§ Spheres are shot from the camera

using Spacebar
§ Very simple solution

Exercise

KOM – Multimedia Communications Lab 53

Input
§ One primitive (point, line or triangle)

Output
§ Fixed number of primitives

Use cases:
§ One primitive (point, line or triangle)
§ Use instanced rendering instead

§ Render to cube maps
§ Transform feedback to multiple buffers

Geometry Shaders

KOM – Multimedia Communications Lab 54

Set multiple vertex buffers
§ First one contains some geometry
§ Second one contains for example transformation matrices
§ Plus a step rate

DrawInstanced(int instances)
§ Draws the geometry instances times

and increases the transform index by
step rate each time

Instanced Rendering

KOM – Multimedia Communications Lab 55

Domain/Control
§ Transform points
§ Set inner and outer tessellation levels (kind of a separate step)

Hull/Evaluation
§ Calculate final positions

Domain/Control and Hull/Evaluation Shaders

KOM – Multimedia Communications Lab 56

Run on user-defined 1D/2D/3D arrays
§ Bind input/output buffers
§ Read/write data buffers, index by invocation id

Compute Shaders

KOM – Multimedia Communications Lab 57

Vulkan
Direct3D 12
(Metal)
XXX
YYY

Modern Graphics APIs

KOM – Multimedia Communications Lab 58

Previously
§ Set fragment shader
§ Set depth mode
§ Set blending mode
§ …

Now
§ At program start
§ Create pipeline
§ pipeline.fragmentShader = …
§ pipeline.depthMode = …
§ pipeline.compile()

§ Laters
§ Set pipeline

Pipeline States

KOM – Multimedia Communications Lab 59

Previously
§ Set fragment shader
§ Set depth mode ß can trigger shader recompilation
§ Set blending mode ß can trigger shader recompilation
§ …

Now
§ At program start
§ Create pipeline
§ pipeline.fragmentShader = …
§ pipeline.depthMode = …
§ pipeline.compile() ß shaders should always be compiled here

§ Laters
§ Set pipeline

Pipeline States

KOM – Multimedia Communications Lab 60

Previously
§ setIndexBuffer
§ setVertexBuffer
§ drawWhatever

Now
§ createCommandList
§ commandList.setIndexBuffer
§ commandList.setVertexBuffer
§ commandList.drawWhatever
§ commandList.close
§ queue.submit(commandList)

Command Lists

KOM – Multimedia Communications Lab 61

Previously
§ setIndexBuffer ß calls have to be converted to actual GPU commands
§ setVertexBuffer ß you can do this from only one thread
§ drawWhatever

Now
§ createCommandList
§ commandList.setIndexBuffer
§ commandList.setVertexBuffer
§ commandList.drawWhatever
§ commandList.close ß convert commands here, do this on any thread you like
§ queue.submit(commandList)

Command Lists

KOM – Multimedia Communications Lab 62

Previously
§ createVertexBuffer

Now
§ allocateMemory(some fancy options)
§ createVertexBuffer(memory)

Buffers

KOM – Multimedia Communications Lab 63

Previously
§ createVertexBuffer

Now
§ allocateMemory(some fancy options) ß cpu or gpu mem, cache options,…
§ createVertexBuffer(memory)

Buffers

KOM – Multimedia Communications Lab 64

Previously
§ vertexBuffer.lock; memcpy; vertexBuffer.unlock;
§ drawSomething
§ vertexBuffer.lock; memcpy; vertexBuffer.unlock;
§ drawSomething

Now
§ vertexBuffer.lock; memcpy; vertexBuffer.unlock;
§ drawSomething
§ Wait for the GPU
§ Hope for the best
§ vertexBuffer.lock; memcpy; vertexBuffer.unlock;
§ drawSomething

Buffers

KOM – Multimedia Communications Lab 65

Previously
§ vertexBuffer.lock; memcpy; vertexBuffer.unlock;
§ drawSomething
§ vertexBuffer.lock; memcpy; vertexBuffer.unlock;
§ drawSomething

Now
§ vertexBuffer.lock; memcpy; vertexBuffer.unlock;
§ drawSomething
§ Wait for the GPU ß This is very slow
§ Hope for the best ß Easy to get wrong because cache coherency,…
§ vertexBuffer.lock; memcpy; vertexBuffer.unlock;
§ drawSomething

Buffers

