
© author(s) of these slides including research results from the KOM research network and TU Darmstadt; otherwise it is specified at the respective slide

5-Dec-17

Prof. Dr.-Ing. Ralf Steinmetz

KOM - Multimedia Communications Lab

Template all v.3.4

PPT-for-all___v.3.4_office2010___2012.09.10.pptx

Game Technology

Lecture 7 – 4.12.2017

Physically Based Rendering

Dipl-Inform. Robert Konrad

Polona Caserman, M.Sc.

KOM – Multimedia Communications Lab 2

Intro

https://www.youtube.com/watch?v=okMUxGFjkpY

KOM – Multimedia Communications Lab 3

▪ Starts from light source

▪Bounces around

▪ Looses intensity with each collision

▪Eventually reaches the camera

Light

KOM – Multimedia Communications Lab 4

Light Sources

KOM – Multimedia Communications Lab 5

Forward Rendering

▪ Iterate over all lights in the pixel shader

▪ Optionally use a pre-depth pass

Deferred Rendering

▪ Render buffers of depth, normals, materials,…

▪ Render simple geometry, approximating light distributions

▪ Add light inside the geometry using a pixel shader

Forward+

▪ Create 3D grid, assign most important lights to each grid

▪ Pull light info from the grid in the pixel shader

Rendering Lots of Lights

KOM – Multimedia Communications Lab 6

Point Lights

Defined by a position and light color/intensity

KOM – Multimedia Communications Lab 7

Point light plus an angle

Spot Lights

KOM – Multimedia Communications Lab 8

Just a direction and light intensity/color

Directional Light

KOM – Multimedia Communications Lab 9

Directional Light

KOM – Multimedia Communications Lab 10

Simple solution: Approximate using multiple point/spot lights

Analytical solution: https://labs.unity.com/article/real-time-polygonal-

light-shading-linearly-transformed-cosines

Area Lights

https://labs.unity.com/article/real-time-polygonal-light-shading-linearly-transformed-cosines

KOM – Multimedia Communications Lab 11

Bounces

KOM – Multimedia Communications Lab 12

Bidirectional reflectance distribution function

▪ incoming light direction

▪ outgoing direction (for example to the camera)

▪ returns the ratio of reflected radiance

𝑓𝑟(𝜔𝑖 , 𝜔𝑟)

BRDF

KOM – Multimedia Communications Lab 13

Extended Raytracing

foreach (pixel)

▪ bounce around a lot

Use BRDF at each collision

Very slow

▪ but useful to create reference images

▪ and for prerendered lighting information

Path Tracing

KOM – Multimedia Communications Lab 14

Consider only light rays from direct light sources

▪ First bounce

Use shadow maps

▪ Second bounce

Ignore further light bouncing

▪ No reflections

▪ No ambient light

Realtime Lighting

KOM – Multimedia Communications Lab 15

Put surroundings in cube map

▪ Use for example path tracing to generate the cube map

Ignore lights, instead sample cube map

A cube map is only correct for one position

Ignores dynamic objects

Image-Based Lighting

KOM – Multimedia Communications Lab 16

„High dynamic range“

Use more than 32 bits of data for one pixel

HDR

KOM – Multimedia Communications Lab 17

Bidirectional reflectance distribution function

▪ incoming light direction

▪ outgoing direction (for example to the camera)

▪ returns the ratio of reflected radiance

𝑓𝑟(𝜔𝑖 , 𝜔𝑟)

BRDF

KOM – Multimedia Communications Lab 18

Subsurface-Scattering Wavelength dependence

BRDF Shortcomings

KOM – Multimedia Communications Lab 19

Only positive light

𝒇𝒓 𝝎𝒊, 𝝎𝒓 ≥ 𝟎

BRDF

KOM – Multimedia Communications Lab 20

Inverted

𝒇𝒓 𝝎𝒊, 𝝎𝒓 = 𝒇𝒓(𝝎𝒓, 𝝎𝒊)

BRDF

KOM – Multimedia Communications Lab 21

Energy conserving

∀𝝎𝒊, න
𝛀

𝒇𝒓 𝝎𝒊, 𝝎𝒓 𝒄𝒐𝒔 𝜽𝒓 𝒅𝝎𝒓 ≤ 𝟏

BRDF

KOM – Multimedia Communications Lab 22

color = ambient + diffuse + specular

Phong Lighting

KOM – Multimedia Communications Lab 23

See Exercise 1

Transform textures to linear (pow 2.2)

▪ Or use sRGB texture reading (also allows proper filtering)

Lighting calculations in linear space (gamma 1)

Then transform for sRGB (pow 1 / 2.2)

Gamma Correction / sRGB

KOM – Multimedia Communications Lab 24

Diffuse & Specular

KOM – Multimedia Communications Lab 25

Lambertian reflectance / Phong diffuse

I = L*N

Good enough for modern engines

▪ Used for example in Unreal Engine 4

Diffuse

KOM – Multimedia Communications Lab 26http://www.manufato.com/wp-content/uploads/2010/10/imagem-35-english.jpg

Metals and Dielectrics

KOM – Multimedia Communications Lab 27

Metals

▪ No diffuse

▪ High Specular

Dielectrics

▪ Diffuse

▪ Lower but still surprisingly high Specular

Note: Specular value is specified at low angles

Metals and Dielectrics

KOM – Multimedia Communications Lab 28

Specular Reflection

▪ Polarization does not change

Diffuse Reflection

▪ Polarization is randomized

Polarization of Reflected Light

KOM – Multimedia Communications Lab 29

Cardboard

KOM – Multimedia Communications Lab 30

Cardboard Diffuse

KOM – Multimedia Communications Lab 31

Cardboard Specular

KOM – Multimedia Communications Lab 32

Metal

KOM – Multimedia Communications Lab 33

Metal Specular

KOM – Multimedia Communications Lab 34

Metal Diffuse

KOM – Multimedia Communications Lab 35

angle(normal, light) = angle(normal, camera)

Specularity

KOM – Multimedia Communications Lab 36

angle(normal, light) = angle(normal, camera)

Brick

KOM – Multimedia Communications Lab 37

Fresnel

KOM – Multimedia Communications Lab 38

Fresnel

KOM – Multimedia Communications Lab 39

Schlick(spec, light, normal) = spec + (1 - spec) (1 - (light*normal))^5

▪ light*normal = 1 Schlick = spec

▪ light*normal = 0 Schlick = 1

spec

▪ characteristic specular reflectance

▪ specular color

Schlick Approximation

KOM – Multimedia Communications Lab 40

Microfacet Model

KOM – Multimedia Communications Lab 41

Microfacet BRDF

𝑓 𝑙, 𝑣 =
𝐹 𝑙, ℎ 𝐺 𝑙, 𝑣, ℎ 𝐷(ℎ)

4(𝑛 ∙ 𝑙)(𝑛 ∙ 𝑣)

KOM – Multimedia Communications Lab 42

Microfacet BRDF

𝑓 𝑙, 𝑣 =
𝑭 𝒍, 𝒉 𝐺 𝑙, 𝑣, ℎ 𝐷(ℎ)

4(𝑛 ∙ 𝑙)(𝑛 ∙ 𝑣)

Fresnel Reflectance

KOM – Multimedia Communications Lab 43

Microfacet BRDF

𝑓 𝑙, 𝑣 =
𝐹 𝑙, ℎ 𝑮 𝒍, 𝒗, 𝒉 𝑫(𝒉)

4(𝑛 ∙ 𝑙)(𝑛 ∙ 𝑣)

Active microfacets

KOM – Multimedia Communications Lab 44

Microfacet BRDF

𝑓 𝑙, 𝑣 =
𝐹 𝑙, ℎ 𝐺 𝑙, 𝑣, ℎ 𝑫(𝒉)

4(𝑛 ∙ 𝑙)(𝑛 ∙ 𝑣)

Normal
Distribution Function

KOM – Multimedia Communications Lab 45

Evaluated for h

The concentration of microfacets that have an orientation so they

could reflect light to the camera

▪ Might still be occluded, …

Normal Distribution Function D

KOM – Multimedia Communications Lab 46

D(h)

Portion of microfacets pointing to h

𝐷𝑡𝑟 𝑚 =
𝛼𝑡𝑟
2

𝜋 𝑛 ∙ 𝑚 2 𝛼𝑡𝑟
2 − 1 + 1

2

Trowbridge-Reitz (GGX)

α: Roughness

Normal Distribution

KOM – Multimedia Communications Lab 47

Microfacet BRDF

𝑓 𝑙, 𝑣 =
𝐹 𝑙, ℎ 𝑮 𝒍, 𝒗, 𝒉 𝐷(ℎ)

4(𝑛 ∙ 𝑙)(𝑛 ∙ 𝑣)

Shadow Masking
Function

KOM – Multimedia Communications Lab 48

Also referred to as the Geometry Function

Probability that microfacets with normal h are visible from both the

light and the view direction

Shadow Masking Function G

KOM – Multimedia Communications Lab 49

• G(l, v, h)

• Cook-Torrance:

𝐺𝑐𝑡 𝑙, 𝑣, ℎ = min 1,
2 𝑛 ∙ ℎ 𝑛 ∙ 𝑣

𝑣 ∙ ℎ
,
2 𝑛 ∙ ℎ 𝑛 ∙ 𝑙

𝑣 ∙ ℎ

Geometry Factor

KOM – Multimedia Communications Lab 50

Microfacet BRDF

𝑓 𝑙, 𝑣 =
𝐹 𝑙, ℎ 𝐺 𝑙, 𝑣, ℎ 𝐷(ℎ)

4(𝑛 ∙ 𝑙)(𝑛 ∙ 𝑣)

KOM – Multimedia Communications Lab 51

In practice:

▪ Gamma correction

▪ Microfacet BRDF

▪ Lots of Cube Maps

Physically Based Rendering

KOM – Multimedia Communications Lab 52

Typical Setup

▪ Diffuse texture

▪ Specular texture

▪ Roughness texture

▪ Normal Map

Textures

KOM – Multimedia Communications Lab 53

Diffuse Texture

KOM – Multimedia Communications Lab 54

Specular Texture

KOM – Multimedia Communications Lab 55

Smoothness Texture

KOM – Multimedia Communications Lab 56

Precalculate Cube Maps

▪ Lots of Cube Maps

▪ Manually placed in level editor

Incorporating Image Based Lighting

KOM – Multimedia Communications Lab 57

Cube Maps

KOM – Multimedia Communications Lab 58

Can be interpolated

▪ Which is a rough approximation

Can not capture dynamic objects

Cube Maps

KOM – Multimedia Communications Lab 59

As done in Unreal Engine 4, Killzone Shadow Fall,…

Deferred Rendering Pass

Raytrace depth buffer

If no hit

▪ Interpolate local cube maps

If no hit

▪ Use global cube map

Reflection Rendering

KOM – Multimedia Communications Lab 60

Small notches are normally shadowed

▪ Unless lit directly

Calculations need very exact light bounces

Ambient Occlusion

KOM – Multimedia Communications Lab 61

Filter after rendering

Darken at sharp normal changes

Screen Space Ambient Occlusion

KOM – Multimedia Communications Lab 62

„Ambient light“

Spherical Harmonic Lighting

Voxel Cone Tracing

…

Global Illumination

KOM – Multimedia Communications Lab 63

Stay closer to nature

▪ Energy conservation

▪ Metals vs. Dielectrics

▪ Textures, parameters can be capured from nature

More reusable assets

▪ No specific lighting information baked/painted into textures

Physically Based Shading in Theory and Practice Course

@SIGGRAPH

http://blog.selfshadow.com/publications/

Summary

http://blog.selfshadow.com/publications/

KOM – Multimedia Communications Lab 64

GPU Internals

NVidia GeForce GT 6600, 2004

KOM – Multimedia Communications Lab 65

Memory bandwidth is extremely important

▪ Textures

▪ Framebuffer

▪ Depth Buffer

Memory access times not very important

▪ Most data is streamed

▪ Access times can be hidden by switching tasks

Memory

KOM – Multimedia Communications Lab 66

Gigantic discrepancy from low-end to high-end

▪ High End CPU: 60 GB/s

▪ GeForce 1030: 48 GB/s

▪ PS4: 176 GB/s

▪ GeForce 1080 Ti: 484 GB/s

Memory

KOM – Multimedia Communications Lab 67

Run on the same hardware

Dynamically scheduled

Vertex and Fragments Shaders

KOM – Multimedia Communications Lab 68

CPU - GPU

https://developer.nvidia.com/content/life-triangle-nvidias-
logical-pipeline

KOM – Multimedia Communications Lab 69

GPU

KOM – Multimedia Communications Lab 71

Rasterization, Pixel Shader

KOM – Multimedia Communications Lab 72

Work distribution

KOM – Multimedia Communications Lab 73

Also used in CPUs (Hyperthreading)

Switch to different thread when stalled (for example waiting for

memory)

SMT (Symmetric Multithreading)

KOM – Multimedia Communications Lab 74

Compiler can put calculations on multiple vertices/pixels in one

instruction

Problem: Flow control

▪ Wrong paths pseudo-executed

▪ Can be efficient when all vertices/pixel in one pack take the same paths

Shader variants

▪ „Typically when you create a simple surface shader, it internally expands into 50

or so internal shader variants” (Shader Compilation in Unity 4.5)

SIMD

KOM – Multimedia Communications Lab 75

Small work packages can prevent parallelization

▪ Performance dip for tiny triangles

Parallelization

KOM – Multimedia Communications Lab 76

Biggest performance trap

Minimize state changes

Minimize draw calls

Send little data to the GPU

If possible never read data from the GPU

CPU GPU

KOM – Multimedia Communications Lab 77

Broad overview of GPU internals

▪ CPU – GPU interaction

▪ Work distribution

▪ Massively parallel execution (vertex, pixel shaders)

▪ Multithreading and SIMD

Summary

