
© author(s) of these slides including research results from the KOM research network and TU Darmstadt; otherwise it is specified at the respective slide

21-Nov-17

Prof. Dr.-Ing. Ralf Steinmetz

KOM - Multimedia Communications Lab

Template all v.3.4

PPT-for-all___v.3.4_office2010___2012.09.10.pptx

Game Technology

Lecture 5 – 21.11.2017

Hardware Rendering

Dipl.-Inform. Robert Konrad

Polona Caserman, M.Sc.

KOM – Multimedia Communications Lab 2

Pong & Computer Space

Pong (1972), Computer Space (1971)

KOM – Multimedia Communications Lab 3

Pong “Game Engine”

http://www.worldphaco.com/uploads/LAWN_TENNIS.pdf

KOM – Multimedia Communications Lab 4

Apple 2 (1977)

KOM – Multimedia Communications Lab 5

One of the first mass-produced home

computers with CG capabilities

▪ MOS Technologies 6502 at 1 MHz

▪ 4k or more

▪ Actual framebuffer

Apple II

Prince of Persia (1989)Mystery House (1980)

KOM – Multimedia Communications Lab 6

Atari VCS (1977)

KOM – Multimedia Communications Lab 7

Later renamed to Atari 2600

MOS Technologies 6507

▪ Variant of 6502: Addressable memory

reduced from 64 kB to 8 kB

▪ ~1,19 MHz

▪ 128 Bytes

Developers had to be very creative

▪ E.g. build mirrored levels

▪ Use the timing of the monitor to

switch colors in one frame

▪ Use undocumented features

More info: “Racing the Beam: The

Atari Video Computer System”

Atari VCS

Adventure (1979)

KOM – Multimedia Communications Lab 8

Nintendo Entertainment System/Famicom

(1983 Japan, 1985 USA, 1986 Europe)

KOM – Multimedia Communications Lab 9

CPU: Ricoh 2A03 (6502-base) @ 1,77 MHz (PAL) / 1,79 MHz (NTSC)

(no big difference to the VCS)

RAM: 2k (plus game ROM)

Graphics: PPU Ricoh-Chip (NTSC: RP2C02, PAL: RP2C07) @ 5,37

MHz bzw. 5,32 MHz

Supports sprites and tilesets

Nintendo Entertainment System/Famicom

KOM – Multimedia Communications Lab 10

Sprite flickering

▪ Happened when too many sprites

were being drawn in one line

Limited sprite size

▪ Boss fights typically use tiled

backgrounds for bosses

NES quirks

Mega Man 2 (1988)

KOM – Multimedia Communications Lab 11

NES Quirks

https://www.youtube.com/watch?v=JrH5Q8gssvY

KOM – Multimedia Communications Lab 12

Amiga 500 (1987)

Motorola 68000 @ 7 MHz

512k

Programmable pixel shaders

▪ One bitwise operation

▪ http://www.codersnotes.com/notes/c

ommand-and-vector-processors/

KOM – Multimedia Communications Lab 13

IBM PC (1981)

KOM – Multimedia Communications Lab 14

Voodoo Graphics (1996)

KOM – Multimedia Communications Lab 15

Triangle raster engine

Linearly interpolated Gouraud-shaded rendering

Perspective-corrected (divide-per-pixel) texture-mapped rendering

with iterated RGB modulation/addition

Detail and Projected Texture mapping

Linearly interpolated 16-bit Z-buffer rendering

Perspective-corrected 16-bit floating point W-buffer rendering (patent

pending)

Texture filtering: point-sampling, bilinear, and trilinear filtering with

mipmapping

…

Features of Voodoo Graphics chip

KOM – Multimedia Communications Lab 16

Modern intel CPUs

KOM – Multimedia Communications Lab 17

Windows Vista (2007)

KOM – Multimedia Communications Lab 18

Modern consoles

KOM – Multimedia Communications Lab 19

CPU

▪ Run sequential code as fast as possible

GPU (Graphical Processing Unit)

▪ Massively parallel code execution

▪ Plus triangle rasterizer

▪ Plus texture sampler

GPGPU (General purpose computations on GPU)

▪ Programmable compute units, not directly tied to graphics anymore

▪ Carry out a computation massively parallelized

CPU vs GPU

KOM – Multimedia Communications Lab 20

Triangles

KOM – Multimedia Communications Lab 21

Aliasing

KOM – Multimedia Communications Lab 22

Sampling frequency is too low

▪ Example: Original wave on the left

▪ Sample points in the pixel centers

▪ Inaccurately sampled wave on the right

Aliasing

KOM – Multimedia Communications Lab 23

Specifically works on edges

Blend with the background

Would require back-to-front rendering

Edge Antialiasing

KOM – Multimedia Communications Lab 24

Supersample/Multisample Antialiasing

KOM – Multimedia Communications Lab 25

Postprocess Antialiasing

KOM – Multimedia Communications Lab 26

Temporal Anti-Aliasing

Use information from several frames for a cleaner image

or

Anti-Aliasing done over several frames, to remove effects seen during

motion

KOM – Multimedia Communications Lab 27

Basically images

Preferably 2n * 2n

▪ Other sizes not necessarily supported

▪ Expand image and fix up texture coordinates

Textures

KOM – Multimedia Communications Lab 28

Point Filtering

Bilinear Filtering

▪ Interpolate four neighbouring pixels

Texture Sampling

KOM – Multimedia Communications Lab 29

Bilinear filtering

KOM – Multimedia Communications Lab 30

Example: Texture mapped to one pixel

▪ Ideally calculate mean color value of the complete texture

Trick: Precompute images

▪ Width / 2, Height / 2

▪ Width / 4, Height / 4

▪…

▪ Sample from best fitting image

(multum in parvo, „much in little“)

Mip Mapping

KOM – Multimedia Communications Lab 31

No mip mapping

KOM – Multimedia Communications Lab 32

MIP Mapping

KOM – Multimedia Communications Lab 33

Seams between mip levels are often visible

▪ Trilinear filtering

Perspective stretches images differently in x and y

▪ No optimal mip level

Mip Mapping

KOM – Multimedia Communications Lab 34

Anisotropic Filtering

KOM – Multimedia Communications Lab 35

Anisotropic filtering

KOM – Multimedia Communications Lab 36

Implemented in hardware

Used automatically by the rasterizer

3D APIs offer simple configuration

▪ Off, allow only smaller values, allow only larger values

Depth Buffer

KOM – Multimedia Communications Lab 37

Critical for performance

▪ Reads in previous pixels, stresses memory interface

▪ Makes parallel execution more difficult

Fixed modes

▪ 1 * new pixel + 0 * old pixel

▪ source alpha * new pixel + (1 - source alpha) * old pixel

▪…

▪ (destination alpha is rarely used)

Alpha-Blending

KOM – Multimedia Communications Lab 38

Render to texture

Draw rendered texture

Draw blended geometry

▪ Use rendered texture as input

Much slower

Unless GL_EXT_shader_framebuffer_fetch

Programmable Blending

KOM – Multimedia Communications Lab 39

Standard blending

▪ source alpha * new pixel + (1 - source alpha) * old pixel

Additive blending

▪ source alpha * new pixel + old pixel

Most used blending modes

KOM – Multimedia Communications Lab 40

Bilinear filtering samples rgb + alpha

At alpha borders samples rgb values with alpha 0

Texture Sampling and Transparency

KOM – Multimedia Communications Lab 41

Multiply rgb with alpha

Fixes texture sampling (invisible pixels are multiplied with 0)

Fixes sunglasses

▪ Premultiply alpha, then add something

▪ Combines standard and additive blending

Blending mode:

▪ new pixel + (1 - source alpha) * old pixel

Premultiplied Alpha

KOM – Multimedia Communications Lab 42

Calculates vertex transformations

Prepares additional data for later shader stages

 What we did in Exercise 3

Vertex Shader

KOM – Multimedia Communications Lab 43

Also referred to as Pixel Shader

Uses interpolated data from vertex shader

Calculates colors

 What we did in Exercise 4

Fragment Shader

KOM – Multimedia Communications Lab 44

Array of vertices

Can hold additional data per vertex

▪ E.g normal, animation data, ...

Has to assign additional data to names or registers for vertex shader

Primary interface from CPU to GPU

Vertex Buffer

KOM – Multimedia Communications Lab 45

Array of indices

That‘s it

 One vertex can be re-used in several triangles

Index Buffer

KOM – Multimedia Communications Lab 46

Set Vertex Shader

Set Fragment Shader

Set IndexBuffer

Set Vertex Buffer

DrawIndexedTriangles()

DrawIndexedTriangles()

…

Draw Calls

KOM – Multimedia Communications Lab 47

Create command buffers

Verify data (?)

Memory layouts and locations

Compile shaders

Synchronize resources (draw calls when vertex buffer still in use?)

Implicit Work

KOM – Multimedia Communications Lab 48

No Rasterization

Define work group sizes manually

Many competing languages

▪ Even OpenCL and GLSL compute shaders

Compute Shader GPGPU

KOM – Multimedia Communications Lab 49

Xeon Phi

▪ Ex project Larrabee

• https://code.google.com/p/cudaraster/

• From nVidia

Triangles on Compute

https://code.google.com/p/cudaraster/

KOM – Multimedia Communications Lab 50

Geometry Shader

▪ Works on complete triangles

▪ Can often be replaced with instanced rendering

Tessellation Shader

▪ Can create new triangles

More Shaders

KOM – Multimedia Communications Lab 51

color = ambient + diffuse + specular

▪ Note: Light from different sources can always be added just like that

Phong Lighting

KOM – Multimedia Communications Lab 52

Ambient = Constant

KOM – Multimedia Communications Lab 53

Diffuse

KOM – Multimedia Communications Lab 54

diffuse = LN (see previous lecture)

Diffuse

KOM – Multimedia Communications Lab 55

Specular

KOM – Multimedia Communications Lab 56

𝑰𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 = 𝑰𝒊𝒏𝒌𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓𝒄𝒐𝒔
𝒏𝜽

𝑰𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 = 𝑰𝒊𝒏𝒌𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 𝑹 ∙ 𝑽
𝐧

R: mirrored vector to the light source (reflectance vector)

V: vector to the camera

n: shininess – start at 32 and tune

k: empiric reflection factor

Empirical model

Ugly for larger angles (cos 0)

(H: Half-vector between V and L)

(N: Normal)

Specular

KOM – Multimedia Communications Lab 57

𝑯 =
𝑽 + 𝑳

𝑽 + 𝑳

𝑰𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 = 𝑰𝒊𝒏𝒌𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓𝒄𝒐𝒔
𝒏𝜽′

𝑰𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 = 𝑰𝒊𝒏𝒌𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 ∙
(𝑽 + 𝑳) ∙ 𝑵

(𝑽 + 𝑳) ∙ 𝑵

𝒏

A little faster

A little nicer

Blinn Phong

KOM – Multimedia Communications Lab 58

Real ambient light is hard

▪ Light bouncing and bouncing and bouncing…

Ambient light tends to look very diffuse

▪ No hard borders

Precompute everything

▪ Put it in small textures

▪ Bilinear filtering blurry stuff works wonderfully

Better ambient light

KOM – Multimedia Communications Lab 59

Light Baking

Quake (1996)

KOM – Multimedia Communications Lab 60

Render six orthogonal perspectives into a cube map

▪ Camera center = center of object to be rendered

Sample vector into cubemap for every pixel

Obviously very expensive

Can not be precomputed

Better specular lighting

KOM – Multimedia Communications Lab 61

Thinking of „Ambient“ is only an approximation

▪ Phong lighting is an approximation of an approximation

Light bounces around

▪ First bounce direct lighting (use diffuse and specular)

▪ Second bounce hard shadows

▪ More bounces ambient light

Ambient, Diffuse…

KOM – Multimedia Communications Lab 62

Set camera to light source

Render depth each pixel value = distance from light

During regular rendering

Transform vertices two times

▪ Using camera position

▪ Using light position z = distance from light

Read depth texture

Compare depth calculated using light pos and depth from texture

▪ If greater in shadow

Shadow Mapping

KOM – Multimedia Communications Lab 63

Shadow Mapping Problems

KOM – Multimedia Communications Lab 64

Cascaded Shadow Maps

KOM – Multimedia Communications Lab 65

What work can the GPU assist us with?

▪ Highly parallel calculations:

▪ Graphics (each pixel, each vertex, ...)

▪ General purpose tasks that can be parallelized

▪ Graphics-related tasks

▪ Rasterization

▪ Texture lookups/filtering

Techniques

▪ Antialiasing

▪ Mip-mapping

▪ ...

Summary

KOM – Multimedia Communications Lab 66

OpenGL Shading Language

Added to OpenGL in 2004 with OpenGL 2.0

Version 1.10

Similar to C

Semiautomatic parallelization

GLSL

KOM – Multimedia Communications Lab 67

uniform sampler2D tex;

in vec2 texCoord;

in vec4 color;

out vec4 frag;

void main() {

vec4 texcolor = texture(tex, texCoord) * color;

texcolor.rgb *= color.a;

frag = texcolor;

}

GLSL Example

KOM – Multimedia Communications Lab 68

Transforms vertices

Writes transformed vertex to a special var

▪ gl_Position

Can write additional data

Vertex Shader

KOM – Multimedia Communications Lab 69

Writes final color to a single out value

Can write additional data

▪multi target rendering, gl_FragDepth,…

Fragment Shader

KOM – Multimedia Communications Lab 70

Vertex shader defines one function..

▪ ...which is applied to lots of vertices in parallel

Fragment shader defines one function...

▪ ...which is applied to lots of pixels in parallel

Programming model allows hardware to parallelize automatically

▪ To multiple compute cores, SIMD units or combinations of both

Parallelism

KOM – Multimedia Communications Lab 71

Constants

▪ Do not change while shader executes

▪ Can be changed between draw calls

uniform mat4 projectionMatrix;

uniform sampler2D tex;

Uniforms

KOM – Multimedia Communications Lab 72

As many as you want (in theory)

in vec3 vertexPosition;

in vec2 texPosition;

in vec4 vertexColor;

Vertex shader ins

KOM – Multimedia Communications Lab 73

Transfer data to the fragment shader

Vertex shader Interpolation Fragment shader

Output in vertex shader = input in fragment shader

out vec2 texCoord;

Vertex shader outs

KOM – Multimedia Communications Lab 74

vec3 position;

vec4 color;

Support basic arithmetic

Support swizzling

▪ color.bgr

▪ position.xy

Vector types

KOM – Multimedia Communications Lab 75

mat4 projection;

Supports arithmetic with vectors

Matrix types

KOM – Multimedia Communications Lab 76

To read textures

uniform sampler2D tex;

vec4 texcolor = texture(tex, texCoord);

Samplers

KOM – Multimedia Communications Lab 77

gl_Position

gl_FragDepth

https://www.opengl.org/wiki/Built-in_Variable_(GLSL)

▪ There are many more

Special vars

https://www.opengl.org/wiki/Built-in_Variable_(GLSL)

KOM – Multimedia Communications Lab 78

precision mediump float;

Precision can be reduced

▪ Often makes sense in the fragment shader

▪ And is often necessary (OpenGL ES)

Precision modifiers

KOM – Multimedia Communications Lab 79

Up to version 4.6

Different versions for OpenGL ES

GLSL versions

KOM – Multimedia Communications Lab 80

#include <Kore/Graphics4/Graphics.h>

Set uniforms ala

ConstantLocation loc = program->getConstantLocation(„bla“);

Graphics::setFloat(loc, 2.0f);

Coordinate system is (-1 to 1, -1 to 1, -1 to 1) like in OpenGL

Kore Graphics

KOM – Multimedia Communications Lab 81

OpenGL Shading Language

Types of shaders

Input and Output

Operations

More info: „Orange Book“ (OpenGL

Shading Language)

Conclusion

