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Pong & Computer Space

Pong (1972), Computer Space (1971)
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Pong “Game Engine”

http://www.worldphaco.com/uploads/LAWN_TENNIS.pdf
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Apple 2 (1977)
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One of the first mass-produced home 

computers with CG capabilities

▪ MOS Technologies 6502 at 1 MHz

▪ 4k or more

▪ Actual framebuffer

Apple II

Prince of Persia (1989)Mystery House (1980)
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Atari VCS (1977)
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Later renamed to Atari 2600

MOS Technologies 6507

▪ Variant of 6502: Addressable memory 

reduced from 64 kB to 8 kB

▪ ~1,19 MHz

▪ 128 Bytes

Developers had to be very creative

▪ E.g. build mirrored levels

▪ Use the timing of the monitor to 

switch colors in one frame

▪ Use undocumented features

More info: “Racing the Beam: The 

Atari Video Computer System”

Atari VCS

Adventure (1979)



KOM – Multimedia Communications Lab  8

Nintendo Entertainment System/Famicom

(1983 Japan, 1985 USA, 1986 Europe)
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CPU:  Ricoh 2A03 (6502-base) @ 1,77 MHz (PAL) / 1,79 MHz (NTSC)

(no big difference to the VCS)

RAM: 2k (plus game ROM)

Graphics: PPU Ricoh-Chip (NTSC: RP2C02, PAL: RP2C07) @ 5,37 

MHz bzw. 5,32 MHz

Supports sprites and tilesets

Nintendo Entertainment System/Famicom
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Sprite flickering

▪ Happened when too many sprites 

were being drawn in one line

Limited sprite size

▪ Boss fights typically use tiled 

backgrounds for bosses

NES quirks

Mega Man 2 (1988)
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NES Quirks

https://www.youtube.com/watch?v=JrH5Q8gssvY
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Amiga 500 (1987)

Motorola 68000 @ 7 MHz

512k

Programmable pixel shaders

▪ One bitwise operation

▪ http://www.codersnotes.com/notes/c

ommand-and-vector-processors/



KOM – Multimedia Communications Lab  13

IBM PC (1981)
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Voodoo Graphics (1996)
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Triangle raster engine

Linearly interpolated Gouraud-shaded rendering

Perspective-corrected (divide-per-pixel) texture-mapped rendering 

with iterated RGB modulation/addition 

Detail and Projected Texture mapping 

Linearly interpolated 16-bit Z-buffer rendering 

Perspective-corrected 16-bit floating point W-buffer rendering (patent 

pending) 

Texture filtering: point-sampling, bilinear, and trilinear filtering with 

mipmapping

…

Features of Voodoo Graphics chip
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Modern intel CPUs
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Windows Vista (2007)
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Modern consoles
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CPU

▪ Run sequential code as fast as possible

GPU (Graphical Processing Unit)

▪ Massively parallel code execution

▪ Plus triangle rasterizer

▪ Plus texture sampler

GPGPU (General purpose computations on GPU)

▪ Programmable compute units, not directly tied to graphics anymore

▪ Carry out a computation massively parallelized

CPU vs GPU
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Triangles



KOM – Multimedia Communications Lab  21

Aliasing
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Sampling frequency is too low

▪ Example: Original wave on the left

▪ Sample points in the pixel centers

▪ Inaccurately sampled wave on the right

Aliasing
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Specifically works on edges

Blend with the background

Would require back-to-front rendering

Edge Antialiasing
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Supersample/Multisample Antialiasing
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Postprocess Antialiasing
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Temporal Anti-Aliasing

Use information from several frames for a cleaner image

or

Anti-Aliasing done over several frames, to remove effects seen during 

motion
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Basically images

Preferably 2n * 2n

▪ Other sizes not necessarily supported

▪ Expand image and fix up texture coordinates

Textures
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Point Filtering

Bilinear Filtering

▪ Interpolate four neighbouring pixels

Texture Sampling
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Bilinear filtering
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Example: Texture mapped to one pixel

▪ Ideally calculate mean color value of the complete texture

Trick: Precompute images

▪ Width / 2, Height / 2

▪ Width / 4, Height / 4

▪…

▪ Sample from best fitting image

(multum in parvo, „much in little“)

Mip Mapping
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No mip mapping
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MIP Mapping
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Seams between mip levels are often visible

▪ Trilinear filtering

Perspective stretches images differently in x and y

▪ No optimal mip level

Mip Mapping
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Anisotropic Filtering
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Anisotropic filtering
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Implemented in hardware

Used automatically by the rasterizer

3D APIs offer simple configuration

▪ Off, allow only smaller values, allow only larger values

Depth Buffer
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Critical for performance

▪ Reads in previous pixels, stresses memory interface

▪ Makes parallel execution more difficult

Fixed modes

▪ 1 * new pixel + 0 * old pixel

▪ source alpha * new pixel + (1 - source alpha) * old pixel

▪…

▪ (destination alpha is rarely used)

Alpha-Blending
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Render to texture

Draw rendered texture

Draw blended geometry

▪ Use rendered texture as input

Much slower

Unless GL_EXT_shader_framebuffer_fetch

Programmable Blending
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Standard blending

▪ source alpha * new pixel + (1 - source alpha) * old pixel

Additive blending

▪ source alpha * new pixel + old pixel

Most used blending modes
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Bilinear filtering samples rgb + alpha

At alpha borders samples rgb values with alpha 0

Texture Sampling and Transparency
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Multiply rgb with alpha

Fixes texture sampling (invisible pixels are multiplied with 0)

Fixes sunglasses

▪ Premultiply alpha, then add something

▪ Combines standard and additive blending

Blending mode:

▪ new pixel + (1 - source alpha) * old pixel

Premultiplied Alpha
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Calculates vertex transformations

Prepares additional data for later shader stages

 What we did in Exercise 3

Vertex Shader
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Also referred to as Pixel Shader

Uses interpolated data from vertex shader

Calculates colors

 What we did in Exercise 4

Fragment Shader
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Array of vertices

Can hold additional data per vertex

▪ E.g normal, animation data, ...

Has to assign additional data to names or registers for vertex shader

Primary interface from CPU to GPU

Vertex Buffer
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Array of indices

That‘s it

 One vertex can be re-used in several triangles

Index Buffer
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Set Vertex Shader

Set Fragment Shader

Set IndexBuffer

Set Vertex Buffer

DrawIndexedTriangles()

DrawIndexedTriangles()

…

Draw Calls
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Create command buffers

Verify data (?)

Memory layouts and locations

Compile shaders

Synchronize resources (draw calls when vertex buffer still in use?)

Implicit Work
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No Rasterization

Define work group sizes manually

Many competing languages

▪ Even OpenCL and GLSL compute shaders

Compute Shader  GPGPU
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Xeon Phi

▪ Ex project Larrabee

• https://code.google.com/p/cudaraster/

• From nVidia

Triangles on Compute

https://code.google.com/p/cudaraster/
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Geometry Shader

▪ Works on complete triangles

▪ Can often be replaced with instanced rendering

Tessellation Shader

▪ Can create new triangles

More Shaders
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color = ambient + diffuse + specular

▪ Note: Light from different sources can always be added just like that

Phong Lighting
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Ambient = Constant
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Diffuse
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diffuse = LN (see previous lecture)

Diffuse
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Specular
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𝑰𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 = 𝑰𝒊𝒏𝒌𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓𝒄𝒐𝒔
𝒏𝜽

𝑰𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 = 𝑰𝒊𝒏𝒌𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 𝑹 ∙ 𝑽
𝐧

R: mirrored vector to the light source (reflectance vector)

V: vector to the camera

n: shininess – start at 32 and tune

k: empiric reflection factor

Empirical model

Ugly for larger angles (cos  0)

(H: Half-vector between V and L)

(N: Normal)

Specular
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𝑯 =
𝑽 + 𝑳

𝑽 + 𝑳

𝑰𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 = 𝑰𝒊𝒏𝒌𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓𝒄𝒐𝒔
𝒏𝜽′

𝑰𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 = 𝑰𝒊𝒏𝒌𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 ∙
(𝑽 + 𝑳) ∙ 𝑵

(𝑽 + 𝑳) ∙ 𝑵

𝒏

A little faster

A little nicer

Blinn Phong
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Real ambient light is hard

▪ Light bouncing and bouncing and bouncing…

Ambient light tends to look very diffuse

▪ No hard borders

Precompute everything

▪ Put it in small textures

▪ Bilinear filtering blurry stuff works wonderfully

Better ambient light



KOM – Multimedia Communications Lab  59

Light Baking

Quake (1996)
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Render six orthogonal perspectives into a cube map

▪ Camera center = center of object to be rendered

Sample vector into cubemap for every pixel

Obviously very expensive

Can not be precomputed

Better specular lighting
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Thinking of „Ambient“ is only an approximation

▪ Phong lighting is an approximation of an approximation

Light bounces around

▪ First bounce  direct lighting (use diffuse and specular)

▪ Second bounce  hard shadows

▪ More bounces  ambient light

Ambient, Diffuse…
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Set camera to light source

Render depth  each pixel value = distance from light

During regular rendering

Transform vertices two times

▪ Using camera position

▪ Using light position  z = distance from light

Read depth texture

Compare depth calculated using light pos and depth from texture

▪ If greater  in shadow

Shadow Mapping
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Shadow Mapping Problems
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Cascaded Shadow Maps
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What work can the GPU assist us with?

▪ Highly parallel calculations:

▪ Graphics (each pixel, each vertex, ...)

▪ General purpose tasks that can be parallelized

▪ Graphics-related tasks

▪ Rasterization

▪ Texture lookups/filtering

Techniques

▪ Antialiasing

▪ Mip-mapping

▪ ...

Summary
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OpenGL Shading Language

Added to OpenGL in 2004 with OpenGL 2.0

Version 1.10

Similar to C

Semiautomatic parallelization

GLSL
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uniform sampler2D tex;

in vec2 texCoord;

in vec4 color;

out vec4 frag;

void main() {

vec4 texcolor = texture(tex, texCoord) * color;

texcolor.rgb *= color.a;

frag = texcolor;

}

GLSL Example
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Transforms vertices

Writes transformed vertex to a special var

▪ gl_Position

Can write additional data

Vertex Shader
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Writes final color to a single out value

Can write additional data

▪multi target rendering, gl_FragDepth,…

Fragment Shader
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Vertex shader defines one function..

▪ ...which is applied to lots of vertices in parallel

Fragment shader defines one function...

▪ ...which is applied to lots of pixels in parallel

Programming model allows hardware to parallelize automatically

▪ To multiple compute cores, SIMD units or combinations of both

Parallelism
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Constants

▪ Do not change while shader executes

▪ Can be changed between draw calls

uniform mat4 projectionMatrix;

uniform sampler2D tex;

Uniforms
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As many as you want (in theory)

in vec3 vertexPosition;

in vec2 texPosition;

in vec4 vertexColor;

Vertex shader ins
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Transfer data to the fragment shader

Vertex shader  Interpolation  Fragment shader

Output in vertex shader = input in fragment shader

out vec2 texCoord;

Vertex shader outs
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vec3 position;

vec4 color;

Support basic arithmetic

Support swizzling

▪ color.bgr

▪ position.xy

Vector types
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mat4 projection;

Supports arithmetic with vectors

Matrix types
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To read textures

uniform sampler2D tex;

vec4 texcolor = texture(tex, texCoord);

Samplers
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gl_Position

gl_FragDepth

https://www.opengl.org/wiki/Built-in_Variable_(GLSL)

▪ There are many more

Special vars

https://www.opengl.org/wiki/Built-in_Variable_(GLSL)
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precision mediump float;

Precision can be reduced

▪ Often makes sense in the fragment shader

▪ And is often necessary (OpenGL ES)

Precision modifiers
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Up to version 4.6

Different versions for OpenGL ES

GLSL versions
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#include <Kore/Graphics4/Graphics.h>

Set uniforms ala

ConstantLocation loc = program->getConstantLocation(„bla“);

Graphics::setFloat(loc, 2.0f);

Coordinate system is (-1 to 1, -1 to 1, -1 to 1) like in OpenGL

Kore Graphics
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OpenGL Shading Language

Types of shaders

Input and Output

Operations

More info: „Orange Book“ (OpenGL 

Shading Language)

Conclusion


