
© author(s) of these slides including research results from the KOM research network and TU Darmstadt; otherwise it is specified at the respective slide

24-Oct-17

Prof. Dr.-Ing. Ralf Steinmetz

KOM - Multimedia Communications Lab

Template all v.3.4

PPT-for-all___v.3.4_office2010___2012.09.10.pptx

Game Technology

Lecture 2 – 24.10.2017

Timing & Basic Game Mechanics

Dipl. Inform. Robert Konrad

Polona Caserman, M.Sc.

KOM – Multimedia Communications Lab 2

Monitors commonly run at 60 Hz

▪ Games should provide a new frame

every ~16 ms

▪ Movies (used to) operate at 24 Hz

(40 ms)

Why work harder than that?

▪ The frame rate determines how fast

the game can react

▪ Virtual Reality

▪ HTC Vive: 90 Hz

▪ Oculus Rift: 90 Hz

Timing

The Hobbit, 2014
Filmed at 48 fps

KOM – Multimedia Communications Lab 3https://www.youtube.com/watch?v=_fNp37zFn9Q

Lag

Non-instantaneous reaction of the

game to user input

▪ Controller  gaming machine (e.g.

wireless)

▪ Computing reaction

▪ Rendering a frame

▪ Showing the frame

▪ Networked multiplayer: Network

delay

KOM – Multimedia Communications Lab 4

Human reaction time to

▪ light: As low as 190 ms

▪ auditory stimuli: As low as 160 ms

▪ But: includes time to decide and activate muscles

Impact depends on game

▪ Strategy-games, MMORPG: Higher lag acceptable

▪ First-person shooter, rhythm games, …: Lag as low as possible

VR

▪ Very important for immersion and comfort

▪ 50 ms responsive, but lagging

▪ 20 ms mostly unnoticeable

Lag

KOM – Multimedia Communications Lab 5

In a real camera, the filmed objects

change during a frame

The movements are blurred

▪ Fast moving objects more

▪ More the longer the exposure time is

In a virtual camera, without

additional measures, no blurring

is present

▪ All objects rendered at a perfect

instant in time

▪ Similar to the missing depth of field

Motion Blur

Source: Wikipedia

KOM – Multimedia Communications Lab 6

Subdivide time, render multiple frames for each monitor frame

Send averaged frame to the monitor

“Temporal Anti-Aliasing”

Easy Motion Blur algorithm example

Source: http://wallup.net/vehicle-car-wheels-formula-1-motion-blur-road-circuits-blurred-ferrari-f1/

KOM – Multimedia Communications Lab 7

Monitors typically operate at

framerates of 60 Hz

Picture is transferred during a

designated timeslot (vblank)

Signaled by vsync event

Game has to wait for that

timeslot after image

calculations

are done, or else…

▪ Tearing

▪ Display of different images

intermixed

Vertical Sync

KOM – Multimedia Communications Lab 8

General premise

▪ Keep the memory area of the screen untouched while the image is read

▪ Ideal solution: Always have the image ready while it is being read

▪ Hard to achieve in complex games

▪ Requires predictable performance

Double Buffering

▪ Render image to off-screen buffer

▪ Wait for vblank signal

▪ Change active buffer

▪ Change pointer to active memory (page flipping)

▪ Copy to another memory region

▪ Repeat

Buffering

KOM – Multimedia Communications Lab 9

Additional buffer to avoid waiting time

▪ With Double Buffering, we have to wait for vsync until we can continue drawing

▪ In the worst case, CPU & GPU stalled when we could do other calculations

+ With three buffers, one can always be free for writing

- Frames can be skipped

- Frametime becomes hard to predict

- More memory required

- More latency

Depends on implementation

▪ Swap-chains

▪ Keep a linked list of buffers that loops around

▪ On each vblank, continue to next buffer, never skip buffers

▪ Dropping buffers

▪ On vblank, choose the buffer that has the most recently finished image in it

Triple Buffering

KOM – Multimedia Communications Lab 10

Steady framerate is the most important goal

▪ In a game played on a 2D monitor  stutters

▪ In a game played in VR  users throw up

Careful with peaks

▪ Stall because of loading data

 Load everything at level load

 Load async

▪ Several objects are updated in the same frame

 Load balancing, spread out over several frames

General framerate considerations

KOM – Multimedia Communications Lab 11

G-Sync (nVidia)

Freesync (AMD)

Dynamic monitor framerate

▪ Send picture -> monitor updates “shortly” after

The new thing

KOM – Multimedia Communications Lab 12

Separate from actual frame rate

▪ Keep timer for game logic

▪ Update in periodic time steps

▪ Rendering done at frame rate

Otherwise, dependent on performance of the hardware

▪ Prevalent in the Pre-Pentium times

▪ E.g. Wing Commander

Game Logic Timing

Source: http://telkomgaming.co.za/old-versus-new-remembering-the-turbo-button/

KOM – Multimedia Communications Lab 13

TV Standards

▪ Japan & US: NTSC – 60Hz

▪ Europe: PAL – 50 Hz

If games were not coded with this in mind

▪ Gameplay depends on refresh rate

▪ Sound speed depends on refresh rate

https://www.youtube.com/watch?v=WEuiBmCloas

50/60 Hz versions

KOM – Multimedia Communications Lab 14

Which time to use?

▪ Especially problematic if objects query the time, e.g. for simulation of motion

Timing

Frame n

Terrain.Render() ObjectA.Render() ObjectB.Render()

t_1 t_2 t_3

KOM – Multimedia Communications Lab 15

Calculate a time that is used throughout the frame

Virtual frame time

Frame n

Terrain.Render() ObjectA.Render() ObjectB.Render()

t_1 = t_frame

t_frame t_frame t_frame

KOM – Multimedia Communications Lab 16

Which head position to use?

Future positions often predicted by HMD

▪ E.g. using the measured acceleration, physiological models

▪ Can use timewarp mechanism  will look at this in a later lecture

Icon by Hans Gerhard Meier, Noun Project

Virtual Reality Frame Time

Frame n

t_1 t_2 t_3

KOM – Multimedia Communications Lab 17

Ideally - the time when the next frame is displayed to the user

Can only be guessed if performance is unpredictable

▪ Typically the average of last n frame times

High framerates make the problem more difficult

Triple buffering makes the problem more difficult

G-Sync/Freesync makes the problem more difficult

What is the frame time?

KOM – Multimedia Communications Lab 18

Create a simple test scene

▪ For example move a box with constant speed

Use a HDMI capture device

▪ Can usually capture at static 60fps

Use your mobile phone

▪ More often than not includes a high framerate mode

▪ Can be used to debug G-Sync/freesync

Debugging Timing Issues

KOM – Multimedia Communications Lab 19

Cooperative Multithreading

▪Often used in games

Returning

▪ Every (game) object is called

▪ Carries out its calculations…

▪ …and returns, saving its state

+ Synchronization easier to

handle

- Can’t use multiple CPU cores

Preemptive Multithreading

▪ Used in current operating systems

Returning

▪ Every process is called

▪ The scheduler takes control back

▪ State is saved for the process

+ Stalled threads don’t stall the
whole system

- Needs proper synchronization

- Additional costs (saving all state)

Used for whole systems (e.g.
physics)

Multithreading

KOM – Multimedia Communications Lab 20

Cooperative Multithreading

while (true)

{

DoSomething();

yield(); // Explicitly return control

DoAnotherThing();

}

while (true)

{

DoSomething();

DoAnotherThing();

}

Preemptive Multithreading

while (true)

{

// Might be preempted here...

DoSomething();

// ...or here...

// ...or inside the function...

DoAnotherThing();

}

Multithreading

KOM – Multimedia Communications Lab 21

Communication between threads

Critical Sections

int a = 5;

if (a == 10)

{

// Will never happen...

print("Boo!");

}

Second thread

int b = 5;

a = b + 5

Multithreading Problems

KOM – Multimedia Communications Lab 22

Cooperative Multithreading

▪ E.g. coroutines in some languages

▪ Simple enough to use without preemptive problems, but powerful enough for

many purposes

Preemptive Multithreading

▪ Most often for larger systems – seldomly in gameplay code

▪ For systems which take longer than a frame to compute results, e.g. AI queries

▪ For systems that run all the time, e.g. physics

▪ Can make use of multicore systems

Massively parallel execution

▪ General purpose computation on GPU, Compute Shaders

Multithreading - Uses in Games

KOM – Multimedia Communications Lab 23

Calculate the state without information about the previous state

▪ Based solely on parameters

▪ Current time

▪ Configuration parameters

▪ Usually ranged [0-1]; later scaled to correct amount

▪ Allows adding/multiplying using sine/exp/…

Example: Simple wind animation of trees

Functional Animations

KOM – Multimedia Communications Lab 24

Live at https://www.shadertoy.com/view/MtGGWG

Functional Animation Example

https://www.shadertoy.com/view/MtGGWG

KOM – Multimedia Communications Lab 25

Think in procedural terms

▪ Input: t, e.g. in [0, 1]

▪ Output: Animated value f(t)

Combination of several effects

▪ f(t) = g(t) * h(t)

▪ …

Stretching of input parameters

▪ E.g. for easing

Later in shaders

▪ Think of equivalence to gradients

Functional Animation „Mindset“

http://easings.net/

KOM – Multimedia Communications Lab 26

Calculated based on previous states

▪ Usually not from the beginning of the game

▪ Instead, use a window of the last frames or a running average

▪ Often combined with user input

▪ Used for animations where a “closed” form is not possible or too complicated

Example: Physical animation

▪ Very simple: Take the position and velocity of the last frame

▪ Calculate a velocity for the current frame

▪ Get the new position from the old position + current speed

Iterative Animations

KOM – Multimedia Communications Lab 27

Fundamentally iterative

Typically no continuous simulation

Set up windowing system, OS callbacks, initialize libraries/devices, …

Do

▪ Read data from input devices

▪ Calculate new game state

▪ Render frame

▪ (Wait for Vsync)

While the game is active

Close window, free memory (or don’t), end process.

Game Loop

KOM – Multimedia Communications Lab 28

Intersection

▪ Objects are overlapping each other

Unwanted state

▪ In reality, objects would deform/break/...

Collision

▪ Objects ideally have only one contact point/edge/face

▪ Calculate collision response based on this state

Collision Response

▪ Separate bodies or

▪ (Stable) contact

Collisions

KOM – Multimedia Communications Lab 29

x times per second

{

For each object
{

Move object

Check for collisions

If (collision detected) move back

}

}

Collisions

KOM – Multimedia Communications Lab 30

Exact collision will almost never happen

▪ Due to floating point issues and discrete frame time

▪ Different coping strategies

▪ Ignore/Keep pushing objects out of each other

▪ (Smaller time steps)

▪ Find the exact time when collision happened and step to this time

Collision response for multiple objects

▪ Often resolved one after the other

▪ E.g. resolve b-c, then a-c, then a-b

▪ But in reality, solved all at once

Collisions and Timing

c

b

a

KOM – Multimedia Communications Lab 31

Timing

▪ Use a virtual time throughout the frame

▪ Use smaller ticks for systems such as physics

▪ Motion Blur

▪ Multithreading

Animations

▪ Functional

▪ Iterative

Game Loop

▪ Game state

▪ Collision detection

Summary

KOM – Multimedia Communications Lab 32

Static Memory

▪ Global variables

▪ Handled by the compiler, allocated and de-allocated automatically

Stack Memory

▪ Semi-automatically handled by the compiler

▪ Function parameters, local variables, implicit data (e.g. return addresses)

Heap Memory

▪ All manually allocated memory

Memory Management

KOM – Multimedia Communications Lab 33

Allocated dynamically

▪ C++ handles nothing for us -> requests memory from the OS

▪ Can be VERY slow and unreliable

Difference to Java

▪ Java allocates a large block of memory at the beginning

▪ Allocates memory to the program during runtime

▪ Manages this memory

▪  Can still be slow, e.g. if physical RAM is exhausted

▪ Garbage Collection

Custom memory management

▪ Utilize memory access patterns to optimize

▪ Allocate heap memory beforehand

Heap Memory

KOM – Multimedia Communications Lab 34

Managing your own memory for often-used structures

Example: Allocate enough memory for all game objects of one type

▪ Find typical numbers by testing or analysis

▪ Manage the block by yourself

Stack vs Pool-based

▪ Stack: Allocating and freeing using one pointer

▪ Pool: Manage list of free blocks

Keeps data local

▪ Can be better for cache efficiency

Heap Memory Examples

KOM – Multimedia Communications Lab 35

Source: „Systems Performance: Enterprise and the Cloud”,

Brendan Gregg

Effects of cache performance

KOM – Multimedia Communications Lab 36

Variable on the stack

▪ int foo;

Variable on the heap

▪ int* foo;

Passing by value (using the stack)

▪ void bar_val(int a, int b) { }

▪ Values/objects copied onto the stack

Passing by reference (using the heap)

▪ void bar_ref(int* a, int* b) { }

▪ Only a pointer copied (32/64 bits)

▪ Makes it possible to pass back values

Pointers (Example: Integer value)

KOM – Multimedia Communications Lab 37

Getting the pointer to a variable

▪ int a = 3;

▪ int b = 4;

▪ bar_ref(&a, &b);

Warning: Don’t take the address of a local variable and pass unless

you know what you are doing  the callee might save it until it is

invalid

Dereferencing a pointer (getting to the actual value)

void bar_ref(int* a, int* b)

{

*a = *a + *b;

}

Getting addresses and dereferencing pointers

2b

5a

Before

2b

7a

After

KOM – Multimedia Communications Lab 38

Allocated on the stack

▪ int array[3];

Array on the heap

▪ int* array = new int[3];

Deallocate using operator delete[]

▪ delete[] array;

Mixing up leads to undefined behaviour

▪ (Also important for calling destructors)

Arrays

KOM – Multimedia Communications Lab 39

Referenced using their first element

▪ int array[3];

▪ int *a = &array;

▪ a points to the first element of array

Also legal

▪ bar_ref(&array, &array);

Pointer arithmetics

▪ Pointers behave like ints

▪ Addition, Subtraction, …

▪ Evil to operate outside the allocated memory of the array

▪ No bounds checking

Referencing arrays

1505a -5123 8

1505a -5123 8

a + 1 a + 3

?

KOM – Multimedia Communications Lab 40

struct Something {

…

};

char* memory = new char[huge number];

int endOfStack = 0;

Something* thing = (Something*)&memory[endOfStack];

endOfStack += sizeof(Something);

Stack Allocator example

KOM – Multimedia Communications Lab 41

Strings are just arrays of chars

▪ char* f = “foobar”;

“foobar” is a 7-element array

▪ Zero-terminated

▪ Allows measuring the size in O(n) time

Encoding

▪ On all common systems, sizeof(char) is 8 bits

▪ char* can be an UTF8 string

▪ every ANSI string is also a proper utf8 string

▪ Commonly used chars encoded in 8 bits

▪ Uncommon/other languages in several 8-bit blocks

▪ Best practice: Use UTF8 even on systems that natively have other

representations

Strings

f o o b a r 0f

KOM – Multimedia Communications Lab 42

„a“

▪ ANSI: 61 (Hexadecimal)

▪ UTF 8: 61

▪ UTF 16: 00 61

„ä“

▪ ANSI: E4

▪ UTF 8: C3 A4

▪ UTF 16: 00 E4

Example UTF8 vs. UTF 16

KOM – Multimedia Communications Lab 43

Offers template-based generic solutions for dynamic memory

Arrays: std::vector

▪ Adaptive size

▪  Can’t keep addresses to elements in the vector, as they might be invalid

upon a change in size

Strings: std::string

▪ Implemented as a std::vector for chars

▪ Comfortable functions (trim, concatenate, operator+, …)

Game studios tend to avoid these libraries

▪ Template overhead

▪ Unpredictable behaviour

STL (Standard Template Library)

KOM – Multimedia Communications Lab 44

Static, Stack and Heap Memory
▪ Different allocation schemes

▪ Different level of control for the programmer

▪ Choose which is the most useful

Pointers
▪ Allocation on the heap

▪ Pass by value vs. Pass by reference

Arrays
▪ Allocation on the heap

▪ Referenced by pointer to first element

Strings
▪ Arrays of chars

▪ Pointer arithmetic

▪ UTF8 vs. UTF 16

Summary

KOM – Multimedia Communications Lab 45

Side Note for exercise: Cracktros

KOM – Multimedia Communications Lab 46

Intro for a cracked game

Used to show off to other

programmers, cracker groups,

…

Sometimes more impressive than

the original game‘s graphics

Later split into the demo scene

Cracktro

KOM – Multimedia Communications Lab 47

Program impressive demos and compete outside of the warez scene

Always at the cutting edge of the hardware

▪ Use Assembler instead of Basic

▪ Find ways to exploit the hardware

▪ Later: Self-restricted demos (e.g. 64K demos)

Demoscene -> Game industry

▪ E.g. Future Crew -> Remedy

Cracktro  Demoscene

1988 2010

KOM – Multimedia Communications Lab 48

Scrolling

Moving along a sine wave
▪ Note: Often used a sine table for efficient computation

▪ Offset from other characters

▪ Different amplitudes

▪ …

Rasterbars
▪ Use an interrupt to paint lines

▪ Moving rasterbars along sine wave…

Good example for functional animation
▪ Often impossible to store all (animation) data

▪ Instead, generate complex paths from simple inputs

▪ Simplest example: Text moving on a sine wave

▪ Procedural Content Generation

▪ See video of .kkrieger

Classical demo techniques

KOM – Multimedia Communications Lab 49

Examples

?
Your demo

KOM – Multimedia Communications Lab 50

Game Engine

„Game Engine Architecture“

Jason Gregory (Lead Programmer
at Naughty Dog)

Fundamentals
▪ C++

▪ 3D Math

▪ Graphics, …

Practical Examples

Part of the „Semesterapparat“
▪ Fachlesesaal MINT in der ULB

Stadtmitte, 4. Obergeschoss

▪ Lernzentrum Informatik

Book Recommendations

KOM – Multimedia Communications Lab 51

3D Graphics (next lectures)

„Real-time Rendering“

Tomas Akenine-Möller, Eric

Haines

Very detailed look at graphics

algorithms

Also includes further information,

e.g. intersection tests and

collision detection

Book Recommendations

