
© author(s) of these slides including research results from the KOM research network and TU Darmstadt; otherwise it is specified at the respective slide

9-Jan-18

Prof. Dr.-Ing. Ralf Steinmetz

KOM - Multimedia Communications Lab

Template all v.3.4

PPT-for-all___v.3.4_office2010___2012.09.10.pptx

Game Technology

Lecture 10 – 09.01.2018

Large Game Worlds

Dipl-Inf. Robert Konrad

Polona Caserman, M.Sc.

KOM – Multimedia Communications Lab 2

Best of …

FliegendesSpaghettimonster

pathToExam teamnameunknown

K^3

KOM – Multimedia Communications Lab 3

KOM – Multimedia Communications Lab 4

Typical hardware requirements

▪ 8 GiB RAM

▪ 2 GiB Video-RAM

▪ 50 GiB on disk

All SNES games ever (including all language versions)

▪ ~3000 games

▪ ~4.5 GiB

Today‘s Games

KOM – Multimedia Communications Lab 5

One uncompressed texture

▪ 4096 x 4096 x 4 Bytes = 67108864 Bytes = 64 MiB

▪ 2 GiB / 64 MiB = 32

▪ Physically based rendering – typically 4 textures

Today‘s Data

KOM – Multimedia Communications Lab 6

Killzone 4 CPU data

KOM – Multimedia Communications Lab 7

Killzone 4 GPU data

KOM – Multimedia Communications Lab 8

PNG

▪ Lossless

▪ Compression highly dependent on image content

JPEG

▪ Lossy

▪ Generally strong compression

Both

▪ Slow decompression

▪ Can slow down loading times

▪ Not possible to access a single pixel while compressed

▪ Not usable for image computations aka not usable as a texture format

PNG and JPEG

KOM – Multimedia Communications Lab 9

Many different formats

▪ S3TC, PVRTC, ASTC,…

▪ Has to be supported by GPU and Graphics API

▪ Of course much of it is patented and hard to standardize

Design goals

▪ High compression

▪ Low visual degradation

▪ Efficient single pixel access

▪ What we need during fragment shader execution

▪ Constant size of a pixel or a pixel block

Texture Compression

KOM – Multimedia Communications Lab 10

2K Texture

▪ Uncompressed: 4 byte * 2048 * 2048 = 16.77 MB

▪ DXT1: 2048 * 2048 / 16 * 8 bytes = 2.1 MB

▪ PNG: ~6 MB (Depends on content and compression details)

▪ JPEG: ~1 MB (Depends on content and compression details)

Save compressed for GPU (e.g. DXT)

▪ Quick file load direct into memory

▪ Fast, simple

▪ Requires much space

Save in complex format, convert to compressed while loading

▪ Smaller file sizes (e.g. mobile)

▪ Longer loading times

Strategies

KOM – Multimedia Communications Lab 11

Save GPU format in lightly compressed format

▪ lz4, snappy,…

▪ Speeds up loading times (saved load time > decompression time)

Very advanced strategies

▪ Save in a compression format optimized for compressing gpu formats

▪ crunch

▪ Uncompress on GPU

▪ „GPU-decodable supercompressed textures“

Advanced Strategies

KOM – Multimedia Communications Lab 12

Less than 8 bits per color might be ok

The eye‘s color resolution is less then its intensity resolution

Neighboring pixels likely have similar colors

Possible compression strategies

KOM – Multimedia Communications Lab 13

Originally developed by S3 Graphics for the Savage 3D graphics

accelerator

Also known as DXTn/DXTC (DirectX names)

De-facto standard for OpenGL implementations

Series of 5 algorithms that handle compression differently

▪ Mainly depending on the way alpha is treated

Block-based compression algorithm

▪ Input always 4x4 pixel block

▪ Output 64 or 128 bits

S3TC

KOM – Multimedia Communications Lab 14

Input: 4x4 block

Output

▪ c0: Color encoded with r=5,g=6,b=5 bits (16 bits)

▪ c1: Color encoded with r=5,g=6,b=5 bits (16 bits)

▪ 4x4 lookup table with 2 bits per pixel (32 bits)

Intermediate values

▪ if (c0 > c1)

▪ c2 = 2/3 c0 + 1/3 c1

▪ c3 = 1/3 c0 + 2/3 c2

▪if (c0 <= c1)

▪ c2 = 1/2 c0 + 1/2 c1

▪ c3 = transparent black

DXT1

KOM – Multimedia Communications Lab 15

Dotted line: Absorption of cones, Colored lines: Absorption of rods

Overlap in green area human eyes can better differentiate

variations of green than other colors (555/15bits would not align)

https://commons.wikimedia.org/wiki/File:Cone-response.png

Why green?

KOM – Multimedia Communications Lab 16

Input block

4x4, 32 bits per pixel

DXT1 example

FECB00

6AADE4BDE18A

0073CF 4D5357B3995D

00A1DE72C7E7

B3995D 0073CF

BDE18A 6AADE4

72C7E7 72C7E7 6AADE4 6AADE4

KOM – Multimedia Communications Lab 17

Choose two colors

Here: Max distance

DXT1 example

FECB00

6AADE4BDE18A

0073CF 4D5357B3995D

00A1DE72C7E7

B3995D 0073CF

BDE18A 6AADE4

72C7E7 72C7E7 6AADE4 6AADE4

KOM – Multimedia Communications Lab 18

Original color 32 bits (here: alpha = FF)

Encoded color 16 bits

Decoded color 32 bits

 quantization error

Encode using R5G6B5

FECB00 00A1DE

F8C800 00A0D8

FE40 051B

KOM – Multimedia Communications Lab 19

Choose c2 and c3 to lie at 1/3 and 2/3 between c0 and c1

Build the palette

F8C800 00A0D853AD90A5BB48

KOM – Multimedia Communications Lab 20

Determines the quality of the result

Can apply several strategies

▪ Local: Only within our block

▪ Global: Optimize over the image

Principal Component Analysis

"Bounding Box", choose minimum and maximum values along 3 axes

Choosing endpoints

KOM – Multimedia Communications Lab 21

Find the closest colors

c0

c1

c2 c1 c3

c2 c2 c1 c3

c2 c3 c3

c3 c3 c3 c3

Compare to colors

in the block to

c0 to c3

KOM – Multimedia Communications Lab 22

Find the closest colors

00

01

10 01 11

10 10 01 11

10 11 11

11 11 11 11

Color index can be

encoded in 2 bits

KOM – Multimedia Communications Lab 23

c0 = 0xFE40; // 565 – 16 bits

c1 = 0x051B; // 565 – 16 bits

LookupTable =

{00, 10, 01, 11, 10, 10, 01, 11, 10, 11, 01, 11}; // 16x2 bits = 32 bits

Compressed block

KOM – Multimedia Communications Lab 24

Comparison

KOM – Multimedia Communications Lab 25

Well suited for similar gradients

 We only lose accuracy due to quantization

DXT1 Examples

KOM – Multimedia Communications Lab 26

Worst case: Colors not on a gradient

 We can‘t preserve all colors

DXT1 Examples

KOM – Multimedia Communications Lab 27

PVRTC

▪ PowerVR Texture Compression

PVRTC

KOM – Multimedia Communications Lab 28

Compression for images might not be optimal for other textures

▪ But it might just work

▪ Swizzling channels can help

▪ No Alpha used for normal maps

▪ Some algorithms encode alpha better than other values

▪ Move one channel to alpha

3Dc

▪ x²+y²+z²=1

▪ z²=1-x²-y²

▪ One value can be omitted

▪ Can save normals unnormalized, recover later

▪ Plus block compression

Normal Maps, Masks, ...

KOM – Multimedia Communications Lab 29

Let the artists do the job

Repeat images over and over

▪ Nobody might notice it when you do it cleverly

Manual Compression

KOM – Multimedia Communications Lab 30

Manual Compression

Uncharted 3, 2011

KOM – Multimedia Communications Lab 31

Tilemaps/Tilesets

KOM – Multimedia Communications Lab 32

Tile Editors

http://www.mapeditor.org/

KOM – Multimedia Communications Lab 33

Pitfall: The Mayan Adventure (1994)

KOM – Multimedia Communications Lab 34

Warcraft 3 (2002)

KOM – Multimedia Communications Lab 35

Bilinear Filtering

▪ Would have to use texels from two tiles at tile boundaries

▪ Complicated

▪ Expensive, Rarely used

Tile textures in 3D

KOM – Multimedia Communications Lab 36

Multitexturing

KOM – Multimedia Communications Lab 37

Multitexturing

KOM – Multimedia Communications Lab 38

Multitexturing

KOM – Multimedia Communications Lab 39

Performance

▪ More textures, less performance

▪ Precalculating which polys actually use more textures can help

Needs good tool support

▪ Scary communication with artists

Problems

KOM – Multimedia Communications Lab 40

Coarse Streaming

▪ Load and replace complete assets

Fine Grained Streaming

▪ Load and show/play a single asset bit by bit

Streaming

KOM – Multimedia Communications Lab 41

Similar to level of detail systems

▪ Load big textures for near objects

▪ Kick out big textures for far away objects

▪ Maybe blend texture changes in and out

http://www.opensg.org/htdocs/doc-1.8/lod.png

Coarse Streaming

KOM – Multimedia Communications Lab 42

Disks are slow and unreliable

▪ No timing guarantees at all

▪ Load textures in a second thread, always have an emergency strategy ready

(keep super low resolution textures of everything in RAM)

Changing textures at runtime from a helper thread is problematic

▪ Driver might decide to convert the texture

▪ Easier on consoles

▪ Easier with Direct3D 11/12, Vulkan,…

Problems

KOM – Multimedia Communications Lab 43

Fine grained texture streaming

Rage (2011)

KOM – Multimedia Communications Lab 44

Really huge textures

▪ Rage supports textures of up to 128000×128000

▪ That‘s ~60 GiB

Compression

▪ Texture is highly compressed on disk

▪ Using lossy JPEG like compression

One texture for everything

▪ Complete world in one texture

▪ No restrictions for artists

▪ But toolsets provide classical multitexturing tricks

▪ Artists don‘t manually paint 128000x128000 pixels

MegaTextures

KOM – Multimedia Communications Lab 45

Similar to virtual memory

▪ Application (= pixel shader) believes that there is a huge, continuous area of
memory (= texture) it can work on

▪ Operating system (= texture manager) provides required memory pages by
mapping them

For details, see GDC Talk by Sean Barret:
https://www.youtube.com/watch?v=MejJL87yNgI

MegaTextures Implementation

KOM – Multimedia Communications Lab 46

Similar to mip maps

We provide different resolutions of the MegaTexture

Smaller resolution version should encompass everything we need to

sample

Level of Detail

KOM – Multimedia Communications Lab 47

Geometry is split up in tiles

▪ Engine determines screen size of visible tiles

▪ Loads texture parts in varying sizes to optimize current view

MegaTextures

KOM – Multimedia Communications Lab 48https://www.youtube.com/watch?v=YNilHiBpVic

MegaTextures

KOM – Multimedia Communications Lab 49

Geometry compression

▪ Not widely used

▪ No hardware support

▪ Animation data mostly small (thanks to skeletal animations)

Geometry

Geometry Wars, 2003

KOM – Multimedia Communications Lab 50

Remove super detailed geometry

Replace with normal maps

▪ Which is a form of compression by itself

▪ Plus normals can be compressed further

Normal Maps

KOM – Multimedia Communications Lab 51

Same strategies as for textures

▪ Could be directly plugged into a level of detail system

Coarse Geometry Streaming

KOM – Multimedia Communications Lab 52Animated Sparse Voxel Octrees, Dennis Bautembach

Fine-grained geometry streaming

KOM – Multimedia Communications Lab 53

Just Y instead of X/Y/Z

Height Maps

KOM – Multimedia Communications Lab 54

Included in current game

engines

Very coarse geometry

streaming

Need to watch out for

objects and data

▪ Pathfinding

▪ AIs

▪ …

Level Streaming

KOM – Multimedia Communications Lab 55

mp3 and similar compressed formats

▪ Nothing special – at least not anymore

Coarse streaming for sound effects

▪ Easy

▪ Sound effects are short

▪ Sound effects don’t stay on screen

▪ Sound effects can stay in CPU RAM

Fine grained streaming for music and maybe speech

▪ Even mp3 players do it

Sound

KOM – Multimedia Communications Lab 56

32 bit floats

▪ “total precision is 24 bits (equivalent to log10(2
24) ≈ 7.225 decimal digits)”

▪ Can be a little tight for big worlds

Use 64 bit floats for positions

▪ Hard to integrate 32 bit physics engines

Split and Shift the world

▪ Split the world

▪ Shift the closest parts to a position nearer at the camera

▪ Physics work better with smaller coordinates

Really Big Worlds

KOM – Multimedia Communications Lab 57

Elite

▪ 1984

▪ 8 galaxies with 256 planets each

▪ Generated galaxies, planets
including names and properties

▪ BBC Micro: max. 128 KB Memory,
Elite was 52 KB of disk space

Minecraft

▪ Official Release 2011

▪ Generates terrain including
placement of settlements, resources,
... Procedurally

▪ Sold for 2.5 billion USD to Microsoft
in 2014

Procedural Worlds

KOM – Multimedia Communications Lab 58

One of the oldest fields of

procedural content generation

in computer graphics

Lots of info available at:

http://algorithmicbotany.org

Well suited for generation

▪ Based on natural processes

▪ Complexity makes the shapes look

realistic

▪ Can be found by examining how

nature handles growth

Vegetation

http://algorithmicbotany.org/

KOM – Multimedia Communications Lab 59

Structure

▪ Many PCG algorithms can create

instances of classes of objects

▪ One type of house, tree, clothing, ...

▪ Recognizable structure in each

instance

▪ Structured way of deriving an

instance

Randomness

▪ Not a defining characteristic of PCG

▪ But often a central component

Principles

KOM – Multimedia Communications Lab 60

Generate

▪ Texture

▪ Normal Map

▪ Specular Map

▪ ...

Can be used in different systems

▪ Textures for objects

▪ Height maps

▪ Controlling flow or emission of particles

Texture Generation

https://www.youtube.com/watch?v=UZGoht2vkzU

https://www.youtube.com/watch?v=UZGoht2vkzU

KOM – Multimedia Communications Lab 61

Basic Generators & Image inputs

▪ Provide basic shapes and patterns

▪ Can insert randomness into the process

▪ Also image inputs to use in further steps

Filters

▪ Change the look of the input texture

▪ Enhance, blur, filter, ...

▪ Carry out mathematical operations

Combinations

▪ Combine different textures

Texture Generation

Combination

Generator

Filter

KOM – Multimedia Communications Lab 62

Combine different algorithms

Basic Generators have only texture output(s)

Filters and Combiners have

▪ One or more texture inputs

▪ One or more texture outputs

Texture Generation Node Networks

Generator Filter

Combination

Generator

Result

KOM – Multimedia Communications Lab 63

Example of networks - Metal

Noise
Motion

Blur

Overlay

Gradient

Result

KOM – Multimedia Communications Lab 64

Random

▪ All colors

▪ Grayscale

Patterns

▪ Grids

▪ Dots/Spheres

▪ Jittered patterns

▪ Voronoi Diagram

Random Noise

▪ Perlin Noise

Basic Generators Generator

KOM – Multimedia Communications Lab 65

Random

▪ All colors

▪ Grayscale

Patterns

▪ Grids

▪ Dots/Spheres

▪ Jittered patterns

▪ Voronoi Diagram

Random Noise

▪ Perlin Noise

Basic Generators Generator

KOM – Multimedia Communications Lab 66

Random

▪ All colors

▪ Grayscale

Patterns

▪ Grids

▪ Dots/Spheres

▪ Jittered patterns

▪ Voronoi Diagram

Random Noise

▪ Perlin Noise

Basic Generators Generator

KOM – Multimedia Communications Lab 67

Random

▪ All colors

▪ Grayscale

Patterns

▪ Grids

▪ Dots/Spheres

▪ Jittered patterns

▪ Voronoi Diagram

Random Noise

▪ Perlin Noise

Basic Generators Generator

KOM – Multimedia Communications Lab 68

Random

▪ All colors

▪ Grayscale

Patterns

▪ Grids

▪ Dots/Spheres

▪ Jittered patterns

▪ Voronoi Diagram

Random Noise

▪ Perlin Noise

Image Source: http://www.tri-nitro.com/project_mt_1_key_features.php

Basic Generators Generator

KOM – Multimedia Communications Lab 69

Random

▪ All colors

▪ Grayscale

Patterns

▪ Grids

▪ Dots/Spheres

▪ Jittered patterns

▪ Voronoi Diagram

Random Noise

▪ Perlin Noise

Basic Generators Generator

KOM – Multimedia Communications Lab 70

Take a set of points C1 to Cn, „sites“

Every point Ci defines a cell such that for each point P in the cell, no

other point in C lies closer to P than Ci

Regular points lead to regular patterns

Random points lead to irregular patterns

▪ Reptile skin

▪ Parcels of land

▪ ...

(Dual to Delaunay Triangulation)

Voronoi Diagram

KOM – Multimedia Communications Lab 71

Voronoi Diagram – Texture examples

Cobblestone Dry dirt

Giraffe skin Blood cells

KOM – Multimedia Communications Lab 72

Random

▪ All colors

▪ Grayscale

Patterns

▪ Grids

▪ Dots/Spheres

▪ Jittered patterns

▪ Voronoi Diagram

Random Noise

▪ Perlin Noise

Basic Generators Generator

KOM – Multimedia Communications Lab 73

Random pixels

▪ No continuity

▪ If we interpreted it as a 2-

dimensional function (heightmap), it

would not work

Semi-Random Noise

▪ Cloud-like look

▪ Continuous

▪ Works well as a heightmap

Perlin Noise / Simplex Noise

KOM – Multimedia Communications Lab 74

Purely random noise

KOM – Multimedia Communications Lab 75

Continuous noise

KOM – Multimedia Communications Lab 76

Perlin Noise

▪ Developed by Ken Perlin

▪ Invented while working on „Tron“ in 1982

▪ Won an Oscar in 1997

▪ Omnipresent noise generation function

Simplex Noise

▪ Suggested by Perlin in 2001 as a succesor to the previous noise function

▪ Better properties

▪ Scales better to higher dimensions

Perlin Noise, Simplex Noise

KOM – Multimedia Communications Lab 77

Gradient-based noise

▪ Determine for each integer value

▪ Function value 0

▪ Pseudo-random gradient

Perlin Noise

KOM – Multimedia Communications Lab 78

For a given point x (2D), the result is computed by blending

▪ The value of the previous gradient extrapolated to point x

▪ The value of the next gradient extrapolated to point x

Perlin Noise

KOM – Multimedia Communications Lab 79

Blending function

▪ Originally f(t) = 3t^2 – 2t^3

▪ Later f(t) = 6t^5 – 15t^4 + 10t^3

Purpose

▪ This way, the noise is also

continuous at the integer positions

Perlin Noise

KOM – Multimedia Communications Lab 80

Use the dot product to calculate the contribution of a gradient to the
sample

▪ Gradients are defined at the grid points

▪ Use vectors from grid points pointing to (x, y)

Interpolate in x-direction (2 rows)

Interpolate in y-direction

Gradients, Computation

KOM – Multimedia Communications Lab 81

Can be seen better in 1D

Gradient is the slope of the function

Vector towards the evaluated point is the x-Value

In this case, the dot product becomes slope * x

Perlin Noise – Dot product

KOM – Multimedia Communications Lab 82

Normalize the noise

▪ Divide x by width and y by height

Frequency

▪ Noise = perlin(xnormalized * frequency, ynormalized * frequency)

Amplitude

▪ Noise = perlin(x, y) * amplitude

Bring into range [0, 1]

▪ Noise is in [-1, 1]

▪ Add 1, Divide by 2

Using Perlin Noise

KOM – Multimedia Communications Lab 83

Using Perlin Noise

noise

noise(p) + ½ noise(2p) + ¼ noise(4p) ...
|noise(p)| + ½ |noise(2p)| +

¼ |noise(4p)| ...

sin(x + |noise(p)| + ½ |noise(2p)| + ...)

KOM – Multimedia Communications Lab 84

Each pixel of the resulting image

is based on one or more pixels

of the input image

Remember bilinear filtering for

texture lookups

▪ We looked up the values of 2x2

pixels to get a value for the final pixel

Filter kernel

▪ Specifies the pixels we need to

sample and the weights we sample

them with

Filters - Basics Filter

KOM – Multimedia Communications Lab 85

Move a box over the image

▪ New pixel = Sum of original pixels * weights

▪ Iterate over the image and calculate new pixels

Minimal Kernel size: 3x3

▪ Sizes schould be odd numbers (central pixel)

In the following slides

▪ Divide by the sum of the values of the kernel Normalization

▪ Alternatively, floating point numbers could be used

How to handle edges?

▪ Similar to texture lookup

▪ Extend the image, fill with constant color, …

Image source for next slides: http://tech-algorithm.com/articles/boxfiltering/

Box filter Filter

KOM – Multimedia Communications Lab 86

Unfiltered image

Smoothing

Box filter results

0 0 0
0 1 0
0 0 0

1 1 1
1 2 1
1 1 1

Filter

KOM – Multimedia Communications Lab 87

Sharpening

Raised

Box filter results

−1 −1 −1
−1 9 −1
−1 −1 −1

0 0 −2
0 2 0
1 0 0

Filter

KOM – Multimedia Communications Lab 88

Motion Blur

Edge Detection

Box filter results

0 0 1
0 0 0
1 0 0

−1 −1 −1
−1 8 −1
−1 −1 −1

Filter

KOM – Multimedia Communications Lab 89

Remember the lecture on Alpha Blending Combination of source and
destination pixels

Modes
▪ Normal blend mode

▪ Dissolve

▪ Multiply

▪ Screen

▪ Overlay

▪ Hard Light

▪ Soft Light

▪ Dodge and burn

▪ Divide

▪ Addition

▪ Subtract

▪ Difference

▪ Darken Only

▪ Lighten Only

Examples: http://docs.gimp.org/en/gimp-concepts-layer-modes.html

Combinations Combination

KOM – Multimedia Communications Lab 90

As in Minecraft – Generate parts of the world not yet seen

Fill in PCG details after a certain level of detail

Combine PCG and Streaming

KOM – Multimedia Communications Lab 91

Julian Togelius

▪ IT University of Copenhagen

▪ http://julian.togelius.com/

Procedural Content Generation in Games - A textbook and an

overview of current research

▪ Available for free at http://pcgbook.com/

PCG Wiki

▪ http://pcg.wikidot.com

Ebert, Musgrave, Peacheay, Perlin, Worley:

Texturing & Modeling – A procedural approach

Literature

http://julian.togelius.com/
http://pcgbook.com/
http://pcg.wikidot.com/

