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Typical hardware requirements

▪ 8 GiB RAM

▪ 2 GiB Video-RAM

▪ 50 GiB on disk

All SNES games ever (including all language versions)

▪ ~3000 games

▪ ~4.5 GiB

Today‘s Games
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One uncompressed texture

▪ 4096 x 4096 x 4 Bytes = 67108864 Bytes = 64 MiB

▪ 2 GiB / 64 MiB = 32

▪ Physically based rendering – typically 4 textures

Today‘s Data
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Killzone 4 CPU data
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Killzone 4 GPU data
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PNG

▪ Lossless

▪ Compression highly dependent on image content

JPEG

▪ Lossy

▪ Generally strong compression

Both

▪ Slow decompression

▪ Can slow down loading times

▪ Not possible to access a single pixel while compressed

▪ Not usable for image computations aka not usable as a texture format

PNG and JPEG
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Many different formats

▪ S3TC, PVRTC, ASTC,…

▪ Has to be supported by GPU and Graphics API

▪ Of course much of it is patented and hard to standardize

Design goals

▪ High compression

▪ Low visual degradation

▪ Efficient single pixel access

▪  What we need during fragment shader execution

▪ Constant size of a pixel or a pixel block

Texture Compression
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2K Texture

▪ Uncompressed: 4 byte * 2048 * 2048 = 16.77 MB

▪ DXT1: 2048 * 2048 / 16 * 8 bytes = 2.1 MB

▪ PNG: ~6 MB (Depends on content and compression details)

▪ JPEG: ~1 MB (Depends on content and compression details)

Save compressed for GPU (e.g. DXT)

▪ Quick file load direct into memory

▪ Fast, simple

▪ Requires much space

Save in complex format, convert to compressed while loading

▪ Smaller file sizes (e.g. mobile)

▪ Longer loading times

Strategies
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Save GPU format in lightly compressed format

▪ lz4, snappy,…

▪ Speeds up loading times (saved load time > decompression time)

Very advanced strategies

▪ Save in a compression format optimized for compressing gpu formats

▪ crunch

▪ Uncompress on GPU

▪ „GPU-decodable supercompressed textures“

Advanced Strategies



KOM – Multimedia Communications Lab  12

Less than 8 bits per color might be ok

The eye‘s color resolution is less then its intensity resolution

Neighboring pixels likely have similar colors

Possible compression strategies
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Originally developed by S3 Graphics for the Savage 3D graphics

accelerator

Also known as DXTn/DXTC (DirectX names)

De-facto standard for OpenGL implementations

Series of 5 algorithms that handle compression differently

▪ Mainly depending on the way alpha is treated

Block-based compression algorithm

▪ Input always 4x4 pixel block

▪ Output 64 or 128 bits

S3TC
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Input: 4x4 block

Output

▪ c0: Color encoded with r=5,g=6,b=5 bits (16 bits)

▪ c1: Color encoded with r=5,g=6,b=5 bits (16 bits) 

▪ 4x4 lookup table with 2 bits per pixel (32 bits)

Intermediate values

▪ if (c0 > c1)

▪ c2 = 2/3 c0 + 1/3 c1

▪ c3 = 1/3 c0 + 2/3 c2

▪if (c0 <= c1)

▪ c2 = 1/2 c0 + 1/2 c1

▪ c3 = transparent black

DXT1
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Dotted line: Absorption of cones, Colored lines: Absorption of rods

Overlap in green area  human eyes can better differentiate

variations of green than other colors (555/15bits would not align)

https://commons.wikimedia.org/wiki/File:Cone-response.png

Why green?
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Input block

4x4, 32 bits per pixel

DXT1 example

FECB00

6AADE4BDE18A

0073CF 4D5357B3995D

00A1DE72C7E7

B3995D 0073CF

BDE18A 6AADE4

72C7E7 72C7E7 6AADE4 6AADE4
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Choose two colors

Here: Max distance

DXT1 example

FECB00

6AADE4BDE18A

0073CF 4D5357B3995D

00A1DE72C7E7

B3995D 0073CF

BDE18A 6AADE4

72C7E7 72C7E7 6AADE4 6AADE4
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Original color 32 bits (here: alpha = FF)

Encoded color 16 bits

Decoded color 32 bits

 quantization error

Encode using R5G6B5

FECB00 00A1DE

F8C800 00A0D8

FE40 051B
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Choose c2 and c3 to lie at 1/3 and 2/3 between c0 and c1

Build the palette

F8C800 00A0D853AD90A5BB48
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Determines the quality of the result

Can apply several strategies

▪ Local: Only within our block

▪ Global: Optimize over the image

Principal Component Analysis

"Bounding Box", choose minimum and maximum values along 3 axes

Choosing endpoints
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Find the closest colors

c0

c1

c2 c1 c3

c2 c2 c1 c3

c2 c3 c3

c3 c3 c3 c3

Compare to colors

in the block to

c0 to c3
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Find the closest colors

00

01

10 01 11

10 10 01 11

10 11 11

11 11 11 11

Color index can be

encoded in 2 bits
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c0 = 0xFE40; // 565 – 16 bits

c1 = 0x051B; // 565 – 16 bits

LookupTable = 

{00, 10, 01, 11, 10, 10, 01, 11, 10, 11, 01, 11}; // 16x2 bits = 32 bits

Compressed block
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Comparison
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Well suited for similar gradients

 We only lose accuracy due to quantization

DXT1 Examples
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Worst case: Colors not on a gradient

 We can‘t preserve all colors

DXT1 Examples
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PVRTC

▪ PowerVR Texture Compression

PVRTC
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Compression for images might not be optimal for other textures

▪ But it might just work

▪ Swizzling channels can help

▪ No Alpha used for normal maps

▪ Some algorithms encode alpha better than other values

▪ Move one channel to alpha

3Dc

▪ x²+y²+z²=1

▪ z²=1-x²-y²

▪ One value can be omitted

▪ Can save normals unnormalized, recover later

▪ Plus block compression

Normal Maps, Masks, ...
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Let the artists do the job

Repeat images over and over

▪ Nobody might notice it when you do it cleverly

Manual Compression
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Manual Compression

Uncharted 3, 2011
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Tilemaps/Tilesets



KOM – Multimedia Communications Lab  32

Tile Editors

http://www.mapeditor.org/
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Pitfall: The Mayan Adventure (1994)
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Warcraft 3 (2002)
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Bilinear Filtering

▪ Would have to use texels from two tiles at tile boundaries

▪ Complicated

▪ Expensive, Rarely used

Tile textures in 3D
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Multitexturing
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Multitexturing
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Multitexturing
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Performance

▪ More textures, less performance

▪ Precalculating which polys actually use more textures can help

Needs good tool support

▪ Scary communication with artists

Problems
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Coarse Streaming

▪ Load and replace complete assets

Fine Grained Streaming

▪ Load and show/play a single asset bit by bit

Streaming



KOM – Multimedia Communications Lab  41

Similar to level of detail systems

▪ Load big textures for near objects

▪ Kick out big textures for far away objects

▪ Maybe blend texture changes in and out

http://www.opensg.org/htdocs/doc-1.8/lod.png

Coarse Streaming
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Disks are slow and unreliable

▪ No timing guarantees at all

▪ Load textures in a second thread, always have an emergency strategy ready

(keep super low resolution textures of everything in RAM)

Changing textures at runtime from a helper thread is problematic

▪ Driver might decide to convert the texture

▪ Easier on consoles

▪ Easier with Direct3D 11/12, Vulkan,…

Problems
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Fine grained texture streaming

Rage (2011)
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Really huge textures

▪ Rage supports textures of up to 128000×128000

▪ That‘s ~60 GiB

Compression

▪ Texture is highly compressed on disk

▪ Using lossy JPEG like compression

One texture for everything

▪ Complete world in one texture

▪ No restrictions for artists

▪ But toolsets provide classical multitexturing tricks

▪ Artists don‘t manually paint 128000x128000 pixels

MegaTextures
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Similar to virtual memory

▪ Application (= pixel shader) believes that there is a huge, continuous area of
memory (= texture) it can work on

▪ Operating system (= texture manager) provides required memory pages by
mapping them

For details, see GDC Talk by Sean Barret: 
https://www.youtube.com/watch?v=MejJL87yNgI

MegaTextures Implementation
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Similar to mip maps

We provide different resolutions of the MegaTexture

Smaller resolution version should encompass everything we need to

sample

Level of Detail
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Geometry is split up in tiles

▪ Engine determines screen size of visible tiles

▪ Loads texture parts in varying sizes to optimize current view

MegaTextures
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MegaTextures
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Geometry compression

▪ Not widely used

▪ No hardware support

▪ Animation data mostly small (thanks to skeletal animations)

Geometry

Geometry Wars, 2003
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Remove super detailed geometry

Replace with normal maps

▪ Which is a form of compression by itself

▪ Plus normals can be compressed further

Normal Maps
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Same strategies as for textures

▪ Could be directly plugged into a level of detail system

Coarse Geometry Streaming
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Fine-grained geometry streaming
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Just Y instead of X/Y/Z

Height Maps
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Included in current game

engines

Very coarse geometry

streaming

Need to watch out for

objects and data

▪ Pathfinding

▪ AIs

▪ …

Level Streaming
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mp3 and similar compressed formats

▪ Nothing special – at least not anymore

Coarse streaming for sound effects

▪ Easy

▪ Sound effects are short

▪ Sound effects don’t stay on screen

▪ Sound effects can stay in CPU RAM

Fine grained streaming for music and maybe speech

▪ Even mp3 players do it

Sound
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32 bit floats

▪ “total precision is 24 bits (equivalent to log10(2
24) ≈ 7.225 decimal digits)”

▪ Can be a little tight for big worlds

Use 64 bit floats for positions

▪ Hard to integrate 32 bit physics engines

Split and Shift the world

▪ Split the world

▪ Shift the closest parts to a position nearer at the camera

▪ Physics work better with smaller coordinates

Really Big Worlds
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Elite

▪ 1984

▪ 8 galaxies with 256 planets each

▪ Generated galaxies, planets
including names and properties

▪ BBC Micro: max. 128 KB Memory, 
Elite was 52 KB of disk space

Minecraft

▪ Official Release 2011

▪ Generates terrain including
placement of settlements, resources, 
... Procedurally

▪ Sold for 2.5 billion USD to Microsoft 
in 2014

Procedural Worlds
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One of the oldest fields of

procedural content generation

in computer graphics

Lots of info available at: 

http://algorithmicbotany.org

Well suited for generation

▪ Based on natural processes

▪ Complexity makes the shapes look

realistic

▪ Can be found by examining how

nature handles growth

Vegetation

http://algorithmicbotany.org/
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Structure

▪ Many PCG algorithms can create

instances of classes of objects

▪ One type of house, tree, clothing, ...

▪ Recognizable structure in each

instance

▪ Structured way of deriving an 

instance

Randomness

▪ Not a defining characteristic of PCG

▪ But often a central component

Principles
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Generate

▪ Texture

▪ Normal Map

▪ Specular Map

▪ ...

Can be used in different systems

▪ Textures for objects

▪ Height maps

▪ Controlling flow or emission of particles

Texture Generation

https://www.youtube.com/watch?v=UZGoht2vkzU

https://www.youtube.com/watch?v=UZGoht2vkzU
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Basic Generators & Image inputs

▪ Provide basic shapes and patterns

▪ Can insert randomness into the process

▪ Also image inputs to use in further steps

Filters

▪ Change the look of the input texture

▪ Enhance, blur, filter, ...

▪ Carry out mathematical operations

Combinations

▪ Combine different textures

Texture Generation

Combination

Generator

Filter
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Combine different algorithms

Basic Generators have only texture output(s)

Filters and Combiners have

▪ One or more texture inputs

▪ One or more texture outputs

Texture Generation Node Networks

Generator Filter

Combination

Generator

Result
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Example of networks - Metal

Noise
Motion

Blur

Overlay

Gradient

Result
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Random

▪ All colors

▪ Grayscale

Patterns

▪ Grids

▪ Dots/Spheres

▪ Jittered patterns

▪ Voronoi Diagram

Random Noise

▪ Perlin Noise

Basic Generators Generator
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Random

▪ All colors

▪ Grayscale

Patterns

▪ Grids

▪ Dots/Spheres

▪ Jittered patterns

▪ Voronoi Diagram

Random Noise

▪ Perlin Noise

Basic Generators Generator
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Random

▪ All colors

▪ Grayscale

Patterns

▪ Grids

▪ Dots/Spheres

▪ Jittered patterns

▪ Voronoi Diagram

Random Noise

▪ Perlin Noise

Basic Generators Generator
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Random

▪ All colors

▪ Grayscale

Patterns

▪ Grids

▪ Dots/Spheres

▪ Jittered patterns

▪ Voronoi Diagram

Random Noise

▪ Perlin Noise

Basic Generators Generator
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Random

▪ All colors

▪ Grayscale

Patterns

▪ Grids

▪ Dots/Spheres

▪ Jittered patterns

▪ Voronoi Diagram

Random Noise

▪ Perlin Noise

Image Source: http://www.tri-nitro.com/project_mt_1_key_features.php

Basic Generators Generator
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Random

▪ All colors

▪ Grayscale

Patterns

▪ Grids

▪ Dots/Spheres

▪ Jittered patterns

▪ Voronoi Diagram

Random Noise

▪ Perlin Noise

Basic Generators Generator
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Take a set of points C1 to Cn, „sites“

Every point Ci defines a cell such that for each point P in the cell, no

other point in C lies closer to P than Ci

Regular points lead to regular patterns

Random points lead to irregular patterns

▪ Reptile skin

▪ Parcels of land

▪ ...

(Dual to Delaunay Triangulation)

Voronoi Diagram
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Voronoi Diagram – Texture examples

Cobblestone Dry dirt

Giraffe skin Blood cells
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Random

▪ All colors

▪ Grayscale

Patterns

▪ Grids

▪ Dots/Spheres

▪ Jittered patterns

▪ Voronoi Diagram

Random Noise

▪ Perlin Noise

Basic Generators Generator
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Random pixels

▪ No continuity

▪ If we interpreted it as a 2-

dimensional function (heightmap), it

would not work

Semi-Random Noise

▪ Cloud-like look

▪ Continuous

▪ Works well as a heightmap

Perlin Noise / Simplex Noise
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Purely random noise
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Continuous noise
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Perlin Noise

▪ Developed by Ken Perlin

▪ Invented while working on „Tron“ in 1982

▪ Won an Oscar in 1997

▪ Omnipresent noise generation function

Simplex Noise

▪ Suggested by Perlin in 2001 as a succesor to the previous noise function

▪ Better properties

▪ Scales better to higher dimensions

Perlin Noise, Simplex Noise
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Gradient-based noise

▪ Determine for each integer value

▪ Function value 0

▪ Pseudo-random gradient

Perlin Noise
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For a given point x (2D), the result is computed by blending

▪ The value of the previous gradient extrapolated to point x

▪ The value of the next gradient extrapolated to point x

Perlin Noise
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Blending function

▪ Originally f(t) = 3t^2 – 2t^3

▪ Later f(t) = 6t^5 – 15t^4 + 10t^3

Purpose

▪ This way, the noise is also 

continuous at the integer positions

Perlin Noise
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Use the dot product to calculate the contribution of a gradient to the
sample

▪ Gradients are defined at the grid points

▪ Use vectors from grid points pointing to (x, y)

Interpolate in x-direction (2 rows)

Interpolate in y-direction

Gradients, Computation



KOM – Multimedia Communications Lab  81

Can be seen better in 1D

Gradient is the slope of the function

Vector towards the evaluated point is the x-Value

In this case, the dot product becomes slope * x 

Perlin Noise – Dot product
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Normalize the noise

▪ Divide x by width and y by height

Frequency

▪ Noise = perlin(xnormalized * frequency, ynormalized * frequency)

Amplitude

▪ Noise = perlin(x, y) * amplitude

Bring into range [0, 1]

▪ Noise is in [-1, 1]

▪  Add 1, Divide by 2

Using Perlin Noise
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Using Perlin Noise

noise

noise(p) + ½ noise(2p) + ¼ noise(4p) ...
|noise(p)| + ½ |noise(2p)| + 

¼ |noise(4p)| ...

sin( x + |noise(p)| + ½ |noise(2p)| + ...)



KOM – Multimedia Communications Lab  84

Each pixel of the resulting image

is based on one or more pixels

of the input image

Remember bilinear filtering for

texture lookups

▪ We looked up the values of 2x2 

pixels to get a value for the final pixel

Filter kernel

▪ Specifies the pixels we need to

sample and the weights we sample 

them with

Filters - Basics Filter
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Move a box over the image

▪ New pixel = Sum of original pixels * weights

▪ Iterate over the image and calculate new pixels

Minimal Kernel size: 3x3

▪ Sizes schould be odd numbers ( central pixel)

In the following slides

▪ Divide by the sum of the values of the kernel  Normalization

▪ Alternatively, floating point numbers could be used

How to handle edges?

▪ Similar to texture lookup

▪ Extend the image, fill with constant color, …

Image source for next slides: http://tech-algorithm.com/articles/boxfiltering/

Box filter Filter
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Unfiltered image

Smoothing

Box filter results

0 0 0
0 1 0
0 0 0

1 1 1
1 2 1
1 1 1

Filter



KOM – Multimedia Communications Lab  87

Sharpening

Raised

Box filter results

−1 −1 −1
−1 9 −1
−1 −1 −1

0 0 −2
0 2 0
1 0 0

Filter
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Motion Blur

Edge Detection

Box filter results

0 0 1
0 0 0
1 0 0

−1 −1 −1
−1 8 −1
−1 −1 −1

Filter
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Remember the lecture on Alpha Blending  Combination of source and
destination pixels

Modes
▪ Normal blend mode

▪ Dissolve

▪ Multiply

▪ Screen

▪ Overlay

▪ Hard Light

▪ Soft Light

▪ Dodge and burn

▪ Divide

▪ Addition

▪ Subtract

▪ Difference

▪ Darken Only

▪ Lighten Only

Examples: http://docs.gimp.org/en/gimp-concepts-layer-modes.html

Combinations Combination
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As in Minecraft – Generate parts of the world not yet seen

Fill in PCG details after a certain level of detail

Combine PCG and Streaming
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Julian Togelius

▪ IT University of Copenhagen

▪ http://julian.togelius.com/

Procedural Content Generation in Games - A textbook and an 

overview of current research

▪ Available for free at http://pcgbook.com/

PCG Wiki

▪ http://pcg.wikidot.com

Ebert, Musgrave, Peacheay, Perlin, Worley:

Texturing & Modeling – A procedural approach

Literature

http://julian.togelius.com/
http://pcgbook.com/
http://pcg.wikidot.com/

