
Game Technology Winter Semester 2017/2018 Solution 2 Page 1/6

Game Technology
Winter Semester 2017/2018

Solution 2

General Information

• The exercises may be solved by teams of up to three people.

• The solutions have to be uploaded to the Git repositories assigned to the individual teams.

• The submission date (for practical and theoretical tasks) is noted on top of each exercise sheet.

• If you have questions about the exercises write a mail to game-technology@kom.tu-darmstadt.de or
use the forum at https://www.fachschaft.informatik.tu-darmstadt.de/forum/viewforum.php?f=557

Prof. Dr.-Ing. Ralf Steinmetz
Multimedia communications Lab

Dipl.-Inform. Robert Konrad
Polona Caserman, M.Sc.

mailto:game-technology@kom.tu-darmstadt.de
https://www.fachschaft.informatik.tu-darmstadt.de/forum/viewforum.php?f=557

Game Technology Winter Semester 2017/2018 Solution 2 Page 2/6

P2 Practical Task: Crack me up (5 Points)
Old games were often accompanied by little start animations called “cracktros”. Most cracktros are simply
functional animations of positions and colors. YouTube contains hundreds of examples.

In this exercise, you can build upon the code you wrote for exercise 1 if you want to. Animate at least five
properties of your graphics in a purely functional way. Example properties could be position, rotation, scale,
colors, and many more.

Notes:

• If your texture(s) use PNG, drawTexture will use the alpha channel for alpha blending

• Unless you write your own code, there is no text rendering code in Kore

https://github.com/TUDGameTechnology/Exercise2.git contains additional code to help you out. You can
either copy the code changes manually or just pull them into your own repository using
git pull https://github.com/TUDGameTechnology/Exercise2.git (and then handle any merges necessary).

Please remember to push into a branch called exercise2.

Thank you for the creative solutions to this task! There is no code solution for this exercise.

T2. Theoretical Tasks: Timing (5 Points)

T2.1 Iterative and functional time calculations (1 Point)

A space ship labeled Vic Viper starts at time t = 0 and position x = 10 with an x speed of 14 per second.
Calculate the position x after 5 seconds (a) procedurally and (b) iteratively with 3 steps per second. (You can
write a script or use a spreadsheet application).

a) When we calculate the position procedurally, we find a closed formula for the position depending on time:

𝑓(𝑡) = 𝑥0 + 𝑣 ∙ 𝑡
𝑓(𝑡) = 10 + 14 ∙ 𝑡
𝑓(5) = 10 + 14 ∙ 5 = 80

b) For calculating iteratively, we calculate the updated position based on the time delta from the last time
and the previous position.

𝑓(𝑡 + 𝛥𝑡) = 𝑓(𝑡) + 𝑣 ∙ 𝛥𝑡

When we iteratively apply this formula, we get the solution f(5) = 80.

Time DeltaT Pos Speed

0 0,33 10 14

0,33333333 0,33 14,6666667 14

0,66666667 0,33 19,3333333 14

1 0,33 24 14

1,33333333 0,33 28,6666667 14

1,66666667 0,33 33,3333333 14

2 0,33 38 14

2,33333333 0,33 42,6666667 14

2,66666667 0,33 47,3333333 14

3 0,33 52 14

3,33333333 0,33 56,6666667 14

3,66666667 0,33 61,3333333 14

4 0,33 66 14

https://github.com/TUDGameTechnology/Exercise2.git
https://github.com/TUDGameTechnology/Exercise2.git

Game Technology Winter Semester 2017/2018 Solution 2 Page 3/6

4,33333333 0,33 70,6666667 14

4,66666667 0,33 75,3333333 14

5 0,33 80 14

In this case, we arrive at the same solution, since this is an easy calculation. In most cases in game
development, it is very hard or infeasible to derive a closed solution, which is why we often have to apply the
iterative method of calculation.

T2.2 Different framerates (1 Point)

The situation starts out as described in 2.1 but there is a wall of width 5 at between positions x1= 60 and x2=65
(the space ship is a point, it has no width). Calculate the position of the space ship after 5 seconds for (a) a 3
steps per second and (b) a 2 steps per second update. Check for collisions in every update step. When a
collision happens, move back the ship just so far that it barely touches the wall and set its speed to 0.

a) We see a collision at time t = 3 2/3 s, therefore, we set the position back and reduce the speed to 0.

Time Delta Pos Speed

0 0,33 10 14

0,33333333 0,33 14,6666667 14

0,66666667 0,33 19,3333333 14

1 0,33 24 14

1,33333333 0,33 28,6666667 14

1,66666667 0,33 33,3333333 14

2 0,33 38 14

2,33333333 0,33 42,6666667 14

2,66666667 0,33 47,3333333 14

3 0,33 52 14

3,33333333 0,33 56,6666667 14

3,66666667 0,33 61,3333333 14

4 0,33 60 0

4,33 0,33 60 0

4,66 0,33 60 0

4,99 0,33 60 0

b) The collision between times 3.5 and 4 is missed, we continue flying as if nothing happened.

Time DeltaT Pos Speed

0 0,50 10 14

0,5 0,50 17 14

1 0,50 24 14

1,5 0,50 31 14

Game Technology Winter Semester 2017/2018 Solution 2 Page 4/6

2 0,50 38 14

2,5 0,50 45 14

3 0,50 52 14

3,5 0,50 59 14

4 0,50 66 14

4,5 0,50 73 14

5 0,50 80 14

Figure 1: Upper row: Positions for deltaT = 1/2s, Lower row: Positions for deltaT = 1/3s

We see the effect of "tunneling", i.e. the space ship has travelled past the obstacle in one frame. This can
happen if the simulated object was on one side of the obstacle in one frame and on the other side on the next
frame. Without other checks, e.g. casting a ray between the two positions and checking if there is an
obstacle that should have been hit, we will not be able to find this hit. This is the reason why especially fast-
travelling objects such as bullets are often handled with special code in games.

T2.3 Framerate (0.5 Points)

You are working on a game without using any form of multitasking. As it turns out, a purely graphical effect you
implemented runs slow. A colleague suggests calculating and caching the effect every third frame only. Is this a
proper optimization strategy? Discuss the resulting changes to the framerate and the game experience.

Overall, the number of frames per time unit would increase, when we assume that calculating the effect once
and caching it is faster than calculating it each frame.

The game experience might suffer from two factors:

• The players might notice that the effect is cached, i.e. the perceived framerate of the effect is lower
than the actual framerate.

• The frame rate is not steady: During the frame in which the effect is calculated, it is lower, and
higher during the other frames. Especially in VR applications, this can lead to a jarring feeling.

All in all, the goal should be to render each frame optimally, so the proper optimization should rather be
focused on optimizing the effect itself.

Game Technology Winter Semester 2017/2018 Solution 2 Page 5/6

T2.4 Performance (1 Point)

Consider the following parts of a program.
a) Where are the NPCs allocated: On the stack or on the heap?
b) What possible performance problem can you find in the code below? Provide an alternative that is

more performant.

// Forward declaration, defined elsewhere

class NPC;

//...

// Initialization code

const int NumNPCs = 10000;

NPC** NPCs = new NPC*[NumNPCs];

for (int i = 0; i < NumNPCs; i++)

{

NPCs[i] = new NPC();

}

//...

// Updating all NPCs

for (int i = 0; i < NumNPCs; i++)

{

NPCs[i]->Update();

}

a) When we use the operator new(), we allocate memory on the heap (unless we have overloaded it and
changed this behavior).

b) The largest problem of the code stems from the fact that it calls new() each time to allocate a new NPC. This
has two aspects that are sub-optimal:

• Each time we call new(), we ask the operating system for a new memory area. This can take a long
time. If we only allocated enough memory once for all NPCs in a row, we would only have to wait
once for the memory allocation.

• Since we allocate a new memory block each time, we are not guaranteed to get the memory blocks
next to each other. When we iterate over the NPCs, we will probably be jumping around in memory,
leading to many cache misses and therefore more time than we would need.

An alternative solution would use operator new[], and allocate an array of NPCs directly. This is guaranteed to
be in contiguous virtual memory by the C++ standard:
“The allocation function attempts to allocate the requested amount of storage. If it is successful, it shall return
the address of the start of a block of storage whose length in bytes shall be at least as large as the requested
size.” (http://eel.is/c++draft/basic.stc.dynamic.allocation)

For a very large array, virtual memory might still be mapped to different physical memory areas, but at least
large blocks of our array will be contiguous in physical memory.

Alternative code that uses this method would be the following:

// Initialization code

const int NumNPCs = 10000;

NPC* NPCs = new NPC[NumNPCs];

//...

// Updating all NPCs

for (int i = 0; i < NumNPCs; i++)

{

http://eel.is/c++draft/basic.stc.dynamic.allocation

Game Technology Winter Semester 2017/2018 Solution 2 Page 6/6

 NPCs[i].Update();

}

Note: Your code doesn`t have to match exactly as long as you identified a valid performance problem and took
steps to counteract it. You could also use a std::vector if you preferred it. Also, in the exam, you will not be
asked to write C++ code.

